Skip to main content
Log in

A Mean Field Limit for the Hamiltonian Vlasov System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The derivation of effective equations for interacting many body systems has seen a lot of progress in the recent years. While dealing with classical systems, singular potentials are quite challenging (Hauray and Jabin in Annales scientifiques de l’École Normale Supérieure, 2013, Lazarovici and Pickl in Arch Ration Mech Anal 225(3):1201–1231, 2017) comparably strong results are known to hold for quantum systems (Knowles and Pickl in Comm Math Phys 298:101–139, 2010). In this paper, we wish to show how techniques developed for the derivation of effective descriptions of quantum systems can be used for classical ones. While our future goal is to use these ideas to treat singularities in the interaction, the focus here is to present how quantum mechanical techniques can be used for a classical system and we restrict ourselves to regular two-body interaction potentials. In particular we compute a mean field limit for the Hamilton Vlasov system in the sense of (Fröhlich et al. in Comm Math Phys 288:1023–1058, 2009; Neiss in Arch Ration Mech Anal. https://doi.org/10.1007/s00205-018-1275-8) that arises from classical dynamics. The structure reveals strong analogy to the Bosonic quantum mechanical ensemble of the many-particle Schrödinger equation and the Hartree equation as its mean field limit (Pickl in arXiv:0808.1178v1, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Boers, N., Pickl, P.: On mean field limits for dynamical systems. J. Stat. Phys. 164, 1–16 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. Braun, W., Hepp, K.: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Commun. Math. Phys. 56(2), 101–113 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  3. Dobrushin, R.L.: Vlasov equations. Funct. Anal. Appl. 13(2), 115–123 (1979)

    Article  Google Scholar 

  4. Fournier, N., Guillin, A.: On the rate of convergence in wasserstein distance of the empirical measure. Probab. Theory Relat. Fields 162, 1–32 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Fröhlich, J., Knowles, A., Schwarz, S.: On the mean-field limit of Bosons with Coulomb two-body interaction. Comm. Math. Phys. 288, 1023–1058 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  6. Hauray, M., Jabin, P.-E.: Particles approximations of Vlasov equations with singular forces: propagation of chaos. To appear in Annales scientifiques de l’École Normale Supérieure (2013)

  7. Horst, E.: Global strong solutions of Vlasov’s equation—necessary and sufficient conditions for their existence. Banach Center Publ. 19(1), 143–153 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  8. Horst, E.: On the asymptotic growth of the solutions of the Vlasov-Poisson system. Math. Methods Appl. Sci. 16, 75–85 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  9. Kiessling, M.K.-H.: The microscopic foundations of Vlasov theory for jellium-like Newtonian N-body systems. J. Stat. Phys. 155(6), 1299–1328 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  10. Knowles, A., Pickl, P.: Mean-field dynamics: singular potentials and rate of convergence. Comm. Math. Phys. 298, 101–139 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  11. Lazarovici, D., Pickl, P.: A mean field limit for the Vlasov-Poisson system. Arch. Ration. Mech. Anal. 225(3), 1201–1231 (2017)

    Article  MathSciNet  Google Scholar 

  12. Lions, P.-L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105, 415–430 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  13. Loeper, G.: Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. 86, 68–79 (2006)

    Article  MathSciNet  Google Scholar 

  14. Marsden, J., Weinstein, A.: The Hamiltonian structure of the Maxwell-Vlasov equations. Phys. D 4(3), 394–406 (1981)

    Article  MathSciNet  Google Scholar 

  15. Morrison, P.: The Maxwell-Vlasov equations as a continuous Hamiltonian system. Phys. Lett. A 80(5–6), 383–386 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  16. Neiss, R.: Generalized symplectization of Vlasov dynamics and application to the Vlasov-Poisson system. Arch. Ration. Mech. Anal. (2018). https://doi.org/10.1007/s00205-018-1275-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Neunzert, H.: An introduction to the nonlinear Boltzmann-Vlasov equation. In: Cercignani, C. (ed.) Kinetic Theories and the Boltzmann Equation. Lecture Notes in Mathematics, vol. 1048, pp. 60–110. Springer, Berlin (1984)

    Chapter  Google Scholar 

  18. Neunzert, H., Wick, J.: Die approximation der Lösung von Integro-Differentialgleichungen durch endliche Punktmengen. In: Ansorge, R., Törnig, W. (eds.) Numerische Behandlung nichtlinearer Integrodifferential - und Differentialgleichungen. Lecture Notes in Mathematics, vol. 395, pp. 275–290. Springer, Berlin (1974)

    Chapter  Google Scholar 

  19. Pickl, P.: On the time dependent Gross Pitaevskii- and Hartree equation. arXiv:0808.1178v1 (2008)

  20. Schaeffer, J.: Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions. Commun. Partial Differ. Equ. 16(8–9), 1313–1335 (1991)

    Article  MathSciNet  Google Scholar 

  21. Spohn, H.: Dynamics of Charged Particles and their Radiation Field. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  22. Sznitman, A.-S.: Topics in Propagation of Chaos. École d’Été de Probabilités de Saint-Flour XIX—1989. Lecture Notes in Mathematics, vol. 1464, pp. 165–251. Springer, Berlin (1991)

    Google Scholar 

  23. Ye, H., Morrison, P., Crawford, J.: Poisson bracket for the Vlasov equation on a symplectic leaf. Phys. Lett. A 156, 96–100 (1991)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Neiss.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest, because this work has not been funded by third parties.

Additional information

Communicated by Alessandro Giuliani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neiss, R.A., Pickl, P. A Mean Field Limit for the Hamiltonian Vlasov System. J Stat Phys 178, 472–498 (2020). https://doi.org/10.1007/s10955-019-02438-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02438-6

Keywords

Navigation