Skip to main content
Log in

The Microscopic Foundations of Vlasov Theory for Jellium-Like Newtonian \(N\)-Body Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The kinetic equations of Vlasov theory, in the weak formulation, are rigorously shown to govern the \(N\rightarrow \infty \) limit of the Newtonian dynamics of \(D\ge 2\)-dimensional \(N\)-body systems with attractive harmonic pair interactions and locally integrable repulsive inverse power law pair interactions, provided a mild higher moment hypothesis on the forces (which is shown to propagate globally in time for each \(N\)) will hold uniformly in \(N\) at later times if it holds uniformly in \(N\) initially (the uniformity in \(N\) of this moment condition is demonstrated to hold for an open set of initial data). Logarithmic interactions are included as a limiting case. The proof is based on the Liouville equation, more precisely the first member of the pertinent BBGKY hierarchy, and does not invoke the Hewitt–Savage theorem, nor any regularization of the interactions. In addition, a rigorous proof of the virial theorem and of some of its interesting ramifications is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The same equation with \(\kappa =0\) and \(s=1\) in \(V_{\kappa ,s}\), and with \(e^2\) replaced by \(-m^2\), was actually invented much earlier, by Jeans [28], in the context of Newtonian stellar dynamics in \(D=3\) dimensions. By “matter in a gaseous state” one then means for instance a globular cluster of, say, \(N=1{,}000{,}000\) stars, whose Newtonian \(N\)-body problem provides the underlying “microscopic” dynamics. Incidentally, with \(\kappa =0\), \(e^2\rightarrow -m^2\), and \(s=2\) in \(D=3\) dimensions one obtains the so-called “pure Vlasov–Manev” equations [1, 2, 39], which feature a conformal invariance in addition to the Galilei invariance. This refers to [46] where a \(s=2\) correction to Newton’s \(s=1\) interaction is introduced.

  2. An analogous question can be asked with the deterministic Hamiltonian \(N\)-body dynamics replaced by some stochastic \(N\)-body dynamics. In this paper we will not comment on such efforts but refer the reader to the recent works [9, 34].

  3. The basic strategy of the proof has been discussed (in private) at the 2009 VLASOVIA meeting in Marseille. The author thanks Claude Bardos for being his “sounding board.”

  4. For Jellium charges moving in \(D=3\) dimensions with \(s=1\) or \(s=2\) (i.e. either a traditional three-dimensional one-component Coulomb plasma, or the Lynden-Bells’ model) a Neunzert-type proof, based on regularization, and which is part of a long-term collaborative project of the author and Carlo Lancellotti, has been announced in [29, 30]. The proof presented here uses a different strategy.

  5. In particular, \(\mathfrak {R}^1(\mathbb {R}^3) = \mathfrak {H}^{-1}(\mathbb {R}^3)\), the dual of the homogeneous Sobolev space \({\dot{\mathfrak {H}}}^1(\mathbb {R}^3)\).

  6. If the labeling matters, or if (30) is only used in integrals against functions which themselves are invariant under \(S_N\), then instead of (30) one can also work with the \(N\)-th empirical \(U\)-statistics \(\prod \limits _{1\le i\le N} \delta _{\hat{\mathbf {p}}_{i}}(\hat{\mathbf {p}}^{(i)})\delta _{\hat{\mathbf {q}}_{i}}(\hat{\mathbf {q}}^{(i)})\).

  7. If working with Lebesgue spaces, to have the Riesz force term absolutely defined we would also need \(\int \underline{f} \mathrm {d}^D\!p\, \in \mathfrak {L}^{\wp }(\mathbb {R}^{D})\), where \(\wp = 2D/(2D-1-s)\), by the Hardy–Littlewood–Sobolev inequality [41], while \(\wp = 2D/(2D-s)\) should do for “conditionally defined.”

References

  1. Bobylev, A.V., Ibragimov, NKh: Interconnectivity of symmetry properties for equations of dynamics, kinetic theory of gases, and hydrodynamics. Matem. Mod. 1, 100–109 (1989). in Russian

    MATH  MathSciNet  Google Scholar 

  2. Bobylev, A.V., Dukes, P., Illner, R., Victory, H.D.: On Vlasov–Manev equations, I: foundations, properties and global nonexistence. J. Stat. Phys. 88, 885–911 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Boltzmann, L.: Studien über das Gleichgewicht der lebendigen Kraft zwischen bewegten materiellen Punkten. Sitzungsber. Akad. Wiss. Wien 58, 517–560 (1868)

    Google Scholar 

  4. Boltzmann, L.: Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Akad. Wiss. Wien 66, 275ff (1872)

    Google Scholar 

  5. Boltzmann, L.: Vorlesungen über Gastheorie, J.A. Barth, Leipzig (1896); English translation: Lectures on Gas theory (S.G. Brush, transl.), University of California Press, Berkeley (1964)

  6. Braun, W., Hepp, K.: The Vlasov dynamics and its fluctuations in the \(1/N\) limit of interacting classical particles. Commun. Math. Phys. 56, 101–113 (1977)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Calogero, F.: Solution of the one-dimensional \(N\)-body problem with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12:419—436 (1971); Erratum, ibid. 37:3646 (1996)

  8. Calogero, F., Leyvraz, F.: A macroscopic system with undamped periodic compressional oscillations. J. Stat. Phys. 151, 922–937 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Carlen, E.A., Carvalho, M.C., Loss, M.: Determination of the spectral gap for Kac’s master equation and related stochastic evolution. Acta Math. 191, 1–54 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cercignani, C., Illner, R., Pulvirenti, R.: The Mathematical Theory of Dilute Gases. Springer, Berlin (1991)

    Google Scholar 

  11. Desvillettes, L., Mouhot, C., Villani, C.: Celebrating Cergignani’s conjecture for the Boltzmann equation. Kinet. Relat. Models 4, 277–294 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dobrushin, R.L.: Vlasov equations, Funkts. Anal. Pril. 13(2), pp. 48–58, 1979. Engl. transl. in. Funct. Anal. Appl. 13, 115–123 (1979)

  13. Dudley, R.M.: Real Analysis and Probability. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  14. Feynman, R.P.: The Character of Physical Law. MIT Press, Boston (1965)

    Google Scholar 

  15. Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  16. Forrester, P.J., Jancovici, B., Madore, J.: The two-dimensional Coulomb gas on a sphere: exact results. J. Stat. Phys. 69, 179–192 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. Ganguly, K., Victory Jr, H.D.: On the convergence of particle methods for multidimensional Vlasov–Poisson systems. SIAM J. Numer. Anal. 26, 249–288 (1989)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Ganguly, K., Lee, J.T., Victory Jr, H.D.: On simulation methods for Vlasov-Poisson systems with particles initially asymptotically distributed. SIAM J. Numer. Anal. 28, 1574–1609 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gibbs, A.L., Su, E.F.: On choosing and bounding probability metrics, e-print. Int. Stat. Rev. 70, 419–435 (2002)

    Article  MATH  Google Scholar 

  20. Glassey, R.T.: The Cauchy Problem in Kinetic Theory. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  21. Goldstein, S.: Boltzmann’s approach to statistical mechanics. In: Bricmont, J., Dürr, D., Galavotti, M.C., Ghirardi, G., Petruccione, F., Zanghì, N. (eds.) Chance in Physics: Foundations and Perspectives. Lecture Notes in Physics, pp. 39–54. Springer, Berlin (2001)

    Chapter  Google Scholar 

  22. Goldstein, S., Lebowitz, J.L.: On the (Boltzmann) entropy of nonequilibrium systems. Phys. D 193, 53–66 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Grad, H.: Principles of the kinetic theory of gases. In: Flügge, S. (ed.) Handbuch der Physik, pp. 205–294. Springer, Berlin (1958)

    Google Scholar 

  24. Hauray, M., Jabin, P.-E.: \(N\)-particles approximation of the Vlasov equations with singular potential. Arch. Ration. Mech. Anal. 183, 489–524 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hewitt, E., Savage, L.J.: Symmetric measures on Cartesian products. Trans. Am. Math. Soc. 80, 470–501 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, New York (1974)

    MATH  Google Scholar 

  27. Illner, R., Dukes, P., Victory, H.D., Bobylev, A.V.: On Vlasov- -Manev equations, II: local existence and uniqueness. J. Stat. Phys. 91, 625–654 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jeans, J.H.: On the theory of star-streaming and the structure of the universe. MNRAS 76, 70–84 (1915)

    ADS  Google Scholar 

  29. Kiessling, M.K.-H.: Microscopic derivations of Vlasov equations. Commun. Nonlinear Sci. Numer. Simul. 13, 106–113 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Kiessling, M.K.-H.: Statistical equilibrium dynamics. In: Campa, A., Giansanti, A., Morigi, G., Sylos Labini, F. (eds.) Dynamics and Thermodynamics of Systems with Long Range Interactions: Theory and Experiments, vol. 970, pp. 91–108. AIP Conference Proceedings (2008)

  31. Kiessling, M.K.-H.: The Vlasov continuum limit for the classical microcanonical ensemble. Rev. Math. Phys. 21, 1145–1195 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kiessling, M.K.-H.: A note on classical ground state energies. J. Stat. Phys. 136, 275–284 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Kiessling, M.K.-H., Spohn, H.: A note on the eigenvalue density of random matrices. Commun. Math. Phys. 199, 683–695 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Lancellotti, C.: From Vlasov fluctuations to the BGL kinetic equation. Nuovo Cim. 33, 111–119 (2010)

    Google Scholar 

  35. Landkof, N.S.: Foundations of modern potential theory. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  36. Lanford III, O.E.: Time evolution of large classical systems. In: Moser, J. (ed.) Dynamical Systems, Theory and Applications. Battelle Seattle 1974 Rencontres. Lecture Notes in Physics. Springer, Berlin (1975)

    Google Scholar 

  37. Lanford III, O.E.: On a derivation of the Boltzmann equation. Asterisque 40, 117–137 (1976)

    MathSciNet  Google Scholar 

  38. Lanford III, O.E.: On a derivation of the Boltzmann equation. In: Lebowitz, J.L., Montroll, E.W. (eds.) Nonequilibrium Phenomena I: The Boltzmann Equation. North-Holland, New York (1983)

    Google Scholar 

  39. Lemou, M., Méhats, F., Rigault, C.: Stable ground states and self-similar blow-up solutions for the gravitational Vlasov–Manev system. SIAM J. Math. Anal. 44, 3928–3968 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  40. Levermore, D.C., Sun, W.: Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels. Kinet. Relat. Models 3, 335–351 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. Lieb, E.H., Loss, M.: Analysis, 2nd edn. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  42. Lions, P.-L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov–Poisson system. Invent. Math. 105, 415–430 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. Loeper, G.: Uniqueness of the solution to the Vlasov–Poisson system with bounded density. J. Math. Pures Appl. 86, 68–79 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  44. Lynden-Bell, D., Lynden-Bell, R.M.: Exact general solutions to extraordinary \(N\)-body problems. Proc. R. Soc. Lond. A 445, 475–489 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  45. Lynden-Bell, D., Lynden-Bell, R.M.: Relaxation to a perpetually pulsating equilibrium. J. Stat. Phys. 117, 199–209 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. Manev, G.: Die Gravitation und das Prinzip von Wirkung und Gegenwirkung. Z. Phys. 31, 786–802 (1925)

    Article  ADS  Google Scholar 

  47. Maxwell, J.C.: On the dynamical theory of gases. Proc. R. Soc. Lond. Phil. Trans. 157, 49–88 (1867)

    Article  Google Scholar 

  48. Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16, 197–220 (1975)

    Article  MATH  ADS  Google Scholar 

  49. Nerattini, R., Brauchart, J.S., Kiessling, M.K.-H.: “Magic” numbers in Smale’s 7th problem, J. Stat. Phys. (2013) (submitted)

  50. Neunzert, H. Wick, J.: Die Approximation der Lösung von Integro-Differentialgleichungen durch endliche Punktmengen. In: Numerische Behandlung nichtlinearer Integrodifferential- und Differentialgleichungen. Tagung, Math. Forschungsinst., Oberwolfach, 1973, Lecture Notes in Mathematics, vol. 395, pp. 275–290. Springer, Berlin (1974)

  51. Neunzert, H.: An introduction to the nonlinear Boltzmann–Vlasov equation. In: Proceedings of Kinetic Theories and the Boltzmann Equation, Montecatini, 1981. Lecture Notes in Mathematics. vol. 1048, pp. 60–110, Springer, Berlin (1984)

  52. Penrose, O.: Foundations of Statistical Mechanics, Pergamon, Oxford (1970); reprinted by Dover Press. Mineola, New York (2005)

  53. Penrose, R.: The Emperor’s New Mind. Oxford University Press, Oxford (1989)

    Google Scholar 

  54. Pfaffelmoser, K.: Globale klassische Lösungen des dreidimensionalen Vlasov–Poisson-systems. Doctoral Dissertation, Ludwig Maximilian Universität, München (1989)

  55. Pfaffelmoser, K.: Global classical solutions of the Vlasov–Poisson system in three dimensions with generic initial data. J. Diff. Equ. 95, 281–303 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. Pulvirenti, M., Saffrio, C. Simonella, S.: On the validity of the Boltzmann equation for short range potentials, (eprint) arxiv:1301.2514v1 [math-ph] (2013)

  57. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I. Academic Press, New York (1980)

    MATH  Google Scholar 

  58. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II. Academic Press, New York (1975)

    MATH  Google Scholar 

  59. Rein, G., Self-gravitating systems in Newtonian theory—the Vlasov–Poisson system. In: “Mathematics of gravitation”, Part I. vol. 41, pp. 179–194. Banach Center Publication, Warszawa (1997)

  60. Schaeffer, J.: Global existence of smooth solutions to the Vlasov–Poisson system in three dimensions. Commun. PDE 16, 1313–1335 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  61. Thomson, J.J.: On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure. Philos. Mag. 7, 237–265 (1904)

    Article  MATH  MathSciNet  Google Scholar 

  62. Vlasov, A.A.: On vibrational properties of a gas of electrons. Zh. E.T.F 8, 291–318 (1938)

    MATH  Google Scholar 

  63. Vlasov, A.A.: Many-particle theory and its application to plasma, In: Russian monographs and Texts on Advanced Mathematics and Physics. vol. 7. Gordon and Breach, New York (1961); originally published by: State Publishing House for Technical-Theoretical Literature, Moscow and Leningrad (1950)

  64. Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 53, 569–615 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  65. Spohn, H.: Large Scale Dynamics of Interacting Particles. Texts and Monographs in Physics. Springer, Berlin (1991)

    Book  Google Scholar 

  66. Uchiyama, K.: Derivation of the Boltzmann equation from particle dynamics. Hiroshima Math. J. 18, 245–297 (1988)

    MATH  MathSciNet  Google Scholar 

  67. Victory Jr, H.D., Allen, E.J.: The convergence theory of particle-in-cell methods for multidimensional Vlasov–Poisson systems. SIAM J. Numer. Anal. 28, 1207–1241 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  68. Victory Jr, H.D., Tucker, G., Ganguly, K.: The convergence analysis of fully discretized particle methods for solving Vlasov–Poisson systems. SIAM J. Numer. Anal. 28, 955–989 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  69. Villani, C.: Conservative forms of Boltzmann’s collision operator: Landau revisited. Math. Models Numer. Anal. 33, 209–227 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  70. Wollman, S.: On the approximation of the Vlasov–Poisson system by particle methods. SIAM J. Numer. Anal. 37, 1369–1398 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  71. Wollman, S., Ozizmir, E., Narasimhan, R.: The convergence of the particle method for the Vlasov–Poisson system with equally spaced initial data points. Transp. Theory Stat. Phys. 30, 1–62 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges support by the NSF through Grant DMS-0807705. He also thanks Yves Elskens and Clement Mouhot for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K.-H. Kiessling.

Additional information

To Herbert Spohn on occasion of his 65th birthday. In admiration.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiessling, M.KH. The Microscopic Foundations of Vlasov Theory for Jellium-Like Newtonian \(N\)-Body Systems. J Stat Phys 155, 1299–1328 (2014). https://doi.org/10.1007/s10955-014-0934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-0934-x

Keywords

Navigation