Skip to main content
Log in

Asymptotic Behavior of the Velocity Distribution of Driven Inelastic Gas with Scalar Velocities: Analytical Results

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We determine the asymptotic behavior of the tails of the steady state velocity distribution of a homogeneously driven granular gas comprising of particles having a scalar velocity. A pair of particles undergo binary inelastic collisions at a rate that is proportional to a power of their relative velocity. At constant rate, each particle is driven by multiplying its velocity by a factor \(-r_w\) and adding a stochastic noise. When \(r_w <1\), we show analytically that the tails of the velocity distribution are primarily determined by the noise statistics, and determine analytically all the parameters characterizing the velocity distribution in terms of the parameters characterizing the stochastic noise. Surprisingly, we find logarithmic corrections to the leading stretched exponential behavior. When \(r_w=1\), we show that for a range of distributions of the noise, inter-particle collisions lead to a universal tail for the velocity distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jaeger, H.M., Nagel, S.R., Behringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)

    Article  ADS  Google Scholar 

  2. Aranson, I.S., Tsimring, L.S.: Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641–692 (2006)

    Article  ADS  Google Scholar 

  3. Goldhirsch, I., Zanetti, G.: Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 1619–1622 (1993)

    Article  ADS  Google Scholar 

  4. Li, J., Aranson, I.S., Kwok, W.-K., Tsimring, L.S.: Periodic and disordered structures in a modulated gas-driven granular layer. Phys. Rev. Lett. 90, 134301 (2003)

    Article  ADS  Google Scholar 

  5. Corwin, E.I., Jaeger, H.M., Nagel, S.R.: Structural signature of jamming in granular media. Nature 435(7045), 1075–1078 (2005)

    Article  ADS  Google Scholar 

  6. Prados, A., Trizac, E.: Kovacs-like memory effect in driven granular gases. Phys. Rev. Lett. 112, 198001 (2014)

    Article  ADS  Google Scholar 

  7. Lasanta, A., Reyes, F.V., Prados, A., Santos, A.: When the hotter cools more quickly: Mpemba effect in granular fluids. Phys. Rev. Lett. 119, 148001 (2017)

    Article  ADS  Google Scholar 

  8. Joy, J.P., Pathak, S.N., Das, D., Rajesh, R.: Shock propagation in locally driven granular systems. Phys. Rev. E 96(3), 032908 (2017)

    Article  ADS  Google Scholar 

  9. Javier Brey, J., Ruiz-Montero, M.J., Cubero, D.: Homogeneous cooling state of a low-density granular flow. Phys. Rev. E 54, 3664–3671 (1996)

    Article  ADS  Google Scholar 

  10. Esipov, S.E., Pöschel, T.: The granular phase diagram. J. Stat. Phys. 86(5), 1385–1395 (1997)

    Article  ADS  MATH  Google Scholar 

  11. Ben-Naim, E., Chen, S.Y., Doolen, G.D., Redner, S.: Shocklike dynamics of inelastic gases. Phys. Rev. Lett. 83, 4069–4072 (1999)

    Article  ADS  Google Scholar 

  12. Ben-Naim, E., Krapivsky, P.L.: Multiscaling in inelastic collisions. Phys. Rev. E 61, R5–R8 (2000)

    Article  ADS  Google Scholar 

  13. Nie, X., Ben-Naim, E., Chen, S.: Dynamics of freely cooling granular gases. Phys. Rev. Lett. 89, 204301 (2002)

    Article  ADS  Google Scholar 

  14. Dey, S., Das, D., Rajesh, R.: Lattice models for ballistic aggregation in one dimension. Europhys. Lett. 93(4), 44001 (2011)

    Article  ADS  Google Scholar 

  15. Pathak, S.N., Das, D., Rajesh, R.: Inhomogeneous cooling of the rough granular gas in two dimensions. Europhys. Lett. 107(4), 44001 (2014)

    Article  ADS  Google Scholar 

  16. Pathak, S.N., Jabeen, Z., Das, D., Rajesh, R.: Energy decay in three-dimensional freely cooling granular gas. Phys. Rev. Lett. 112, 038001 (2014)

    Article  ADS  Google Scholar 

  17. Shinde, M., Das, D., Rajesh, R.: Violation of the Porod law in a freely cooling granular gas in one dimension. Phys. Rev. Lett. 99(23), 234505 (2007)

    Article  ADS  Google Scholar 

  18. Paul, S., Das, S.K.: Dynamics of clustering in freely cooling granular fluid. Europhys. Lett. 108(6), 66001 (2014)

    Article  ADS  Google Scholar 

  19. Paul, S., Das, S.K.: Ballistic aggregation in systems of inelastic particles: cluster growth, structure, and aging. Phys. Rev. E 96, 012105 (2017)

    Article  ADS  Google Scholar 

  20. Brilliantov, N.V., Formella, A., Pöschel, T.: Increasing temperature of cooling granular gases. Nat. Commun. 9(1), 797 (2018)

    Article  ADS  Google Scholar 

  21. van Zon, J.S., MacKintosh, F.C.: Velocity distributions in dissipative granular gases. Phys. Rev. Lett. 93, 038001 (2004)

    Article  ADS  Google Scholar 

  22. Scholz, C., Pöschel, T.: Velocity distribution of a homogeneously driven two-dimensional granular gas. Phys. Rev. Lett. 118(19), 198003 (2017)

    Article  ADS  Google Scholar 

  23. Windows-Yule, C.R.K.: Do granular systems obey statistical mechanics? A review of recent work assessing the applicability of equilibrium theory to vibrationally excited granular media. Int. J. Mod. Phys. B 31(10), 1742010 (2017)

    Article  ADS  Google Scholar 

  24. Clement, E., Rajchenbach, J.: Fluidization of a bidimensional powder. Europhys. Lett. 16(2), 133 (1991)

    Article  ADS  Google Scholar 

  25. Warr, S., Huntley, J.M., Jacques, G.T.H.: Fluidization of a two-dimensional granular system: experimental study and scaling behavior. Phys. Rev. E 52, 5583–5595 (1995)

    Article  ADS  Google Scholar 

  26. Kudrolli, A., Wolpert, M., Gollub, J.P.: Cluster formation due to collisions in granular material. Phys. Rev. Lett. 78, 1383–1386 (1997)

    Article  ADS  Google Scholar 

  27. Olafsen, J.S., Urbach, J.S.: Clustering, order, and collapse in a driven granular monolayer. Phys. Rev. Lett. 81, 4369–4372 (1998)

    Article  ADS  Google Scholar 

  28. Olafsen, J.S., Urbach, J.S.: Velocity distributions and density fluctuations in a granular gas. Phys. Rev. E 60, R2468–R2471 (1999)

    Article  ADS  Google Scholar 

  29. Losert, W., Cooper, D.G.W., Delour, J., Kudrolli, A., Gollub, J.P.: Velocity statistics in excited granular media. Chaos 9(3), 682–690 (1999)

    Article  ADS  MATH  Google Scholar 

  30. Kudrolli, A., Henry, J.: Non-Gaussian velocity distributions in excited granular matter in the absence of clustering. Phys. Rev. E 62, R1489–R1492 (2000)

    Article  ADS  Google Scholar 

  31. Rouyer, F., Menon, N.: Velocity fluctuations in a homogeneous 2d granular gas in steady state. Phys. Rev. Lett. 85, 3676–3679 (2000)

    Article  ADS  Google Scholar 

  32. Blair, D.L., Kudrolli, A.: Velocity correlations in dense granular gases. Phys. Rev. E 64, 050301 (2001)

    Article  ADS  Google Scholar 

  33. van Zon, J.S., Kreft, J., Goldman, D.I., Miracle, D., Swift, J.B., Swinney, H.L.: Crucial role of sidewalls in velocity distributions in quasi-two-dimensional granular gases. Phys. Rev. E 70, 040301 (2004)

    Article  Google Scholar 

  34. Reis, P.M., Ingale, R.A., Shattuck, M.D.: Forcing independent velocity distributions in an experimental granular fluid. Phys. Rev. E 75(5), 051311 (2007)

    Article  ADS  Google Scholar 

  35. Wang, H.-Q., Feitosa, K., Menon, N.: Particle kinematics in a dilute, three-dimensional, vibration-fluidized granular medium. Phys. Rev. E 80(6), 060304 (2009)

    Article  ADS  Google Scholar 

  36. Vilquin, A., Kellay, H., Boudet, J.-F.: Shock waves induced by a planar obstacle in a vibrated granular gas. J. Fluid Mech. 842, 163–187 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Wildman, R.D., Beecham, J., Freeman, T.L.: Granular dynamics of a vibrated bed of dumbbells. Eur. Phys. J. Spec. Top. 179(1), 5–17 (2009)

    Article  Google Scholar 

  38. Baxter, G.W., Olafsen, J.S.: Kinetics: Gaussian statistics in granular gases. Nature 425(6959), 680–680 (2003)

    Article  ADS  Google Scholar 

  39. Baxter, G.W., Olafsen, J.S.: The temperature of a vibrated granular gas. Granul. Matter 9(1–2), 135–139 (2007)

    Google Scholar 

  40. Windows-Yule, C.R.K., Parker, D.J.: Boltzmann statistics in a three-dimensional vibrofluidized granular bed: Idealizing the experimental system. Phys. Rev. E 87(2), 022211 (2013)

    Article  ADS  Google Scholar 

  41. Aranson, I.S., Olafsen, J.S.: Velocity fluctuations in electrostatically driven granular media. Phys. Rev. E 66, 061302 (2002)

    Article  ADS  Google Scholar 

  42. Kohlstedt, K., Snezhko, A., Sapozhnikov, M.V., Aranson, I.S., Olafsen, J.S., Ben-Naim, E.: Velocity distributions of granular gases with drag and with long-range interactions. Phys. Rev. Lett. 95, 068001 (2005)

    Article  ADS  Google Scholar 

  43. Schmick, M., Markus, M.: Gaussian distributions of rotational velocities in a granular medium. Phys. Rev. E 78(1), 010302 (2008)

    Article  ADS  Google Scholar 

  44. Falcon, E., Bacri, J.-C., Laroche, C.: Equation of state of a granular gas homogeneously driven by particle rotations. Europhys. Lett. 103(6), 64004 (2013)

    Article  ADS  Google Scholar 

  45. Tatsumi, S., Murayama, Y., Hayakawa, H., Sano, M.: Experimental study on the kinetics of granular gases under microgravity. J. Fluid Mech. 641, 521–539 (2009)

    Article  ADS  MATH  Google Scholar 

  46. Hou, M., Liu, R., Zhai, G., Sun, Z., Lu, K., Garrabos, Yves, Evesque, Pierre: Velocity distribution of vibration-driven granular gas in knudsen regime in microgravity. Microgravity Sci. Technol. 20(2), 73 (2008)

    Article  ADS  Google Scholar 

  47. Grasselli, Y., Bossis, G., Morini, R.: Translational and rotational temperatures of a 2d vibrated granular gas in microgravity. Eur. Phys. J. E 38(2), 8 (2015)

    Article  Google Scholar 

  48. Puglisi, A., Loreto, V., Marini Bettolo Marconi, U., Petri, A., Vulpiani, A.: Clustering and non-Gaussian behavior in granular matter. Phys. Rev. Lett. 81(18), 3848 (1998)

    Article  ADS  Google Scholar 

  49. Puglisi, A., Loreto, V., Marini Bettolo Marconi, U., Vulpiani, A.: Kinetic approach to granular gases. Phys. Rev. E 59(5), 5582 (1999)

    Article  ADS  Google Scholar 

  50. Moon, S.J., Shattuck, M.D., Swift, J.B.: Velocity distributions and correlations in homogeneously heated granular media. Phys. Rev. E 64, 031303 (2001)

    Article  ADS  Google Scholar 

  51. van Zon, J.S., MacKintosh, F.C.: Velocity distributions in dilute granular systems. Phys. Rev. E 72, 051301 (2005)

    Article  ADS  Google Scholar 

  52. Cafiero, R., Luding, S., Herrmann, H.J.: Rotationally driven gas of inelastic rough spheres. Europhys. Lett. 60(6), 854 (2002)

    Article  ADS  Google Scholar 

  53. Burdeau, A., Viot, P.: Quasi-gaussian velocity distribution of a vibrated granular bilayer system. Phys. Rev. E 79(6), 061306 (2009)

    Article  ADS  Google Scholar 

  54. Gayen, B., Alam, M.: Orientational correlation and velocity distributions in uniform shear flow of a dilute granular gas. Phys. Rev. Lett. 100(6), 068002 (2008)

    Article  ADS  Google Scholar 

  55. Gayen, B., Alam, M.: Effect of coulomb friction on orientational correlation and velocity distribution functions in a sheared dilute granular gas. Phys. Rev. E 84(2), 021304 (2011)

    Article  ADS  Google Scholar 

  56. Rui, L., Duan-Ming, Z., Zhi-Hao, L.: Velocity distributions in inelastic granular gases with continuous size distributions. Chin. Phys. Lett. 28(9), 090506 (2011)

    Article  Google Scholar 

  57. Das, P., Puri, S., Schwartz, M.: Granular fluids with solid friction and heating. Granul. Matter 20(1), 15 (2018)

    Article  Google Scholar 

  58. Kang, W., Machta, J., Ben-Naim, E.: Granular gases under extreme driving. Europhys. Lett. 91(3), 34002 (2010)

    Article  ADS  Google Scholar 

  59. Brilliantov, N., Pöschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  60. Bobylev, A.V., Carrillo, J.A., Gamba, I.M.: On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys. 98(3), 743–773 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  61. van Noije, T.P.C., Ernst, M.H.: Velocity distributions in homogeneous granular fluids: the free and the heated case. Granul. Matter 1(2), 57–64 (1998)

    Article  Google Scholar 

  62. Ernst, M.H., Brito, R.: Driven inelastic maxwell models with high energy tails. Phys. Rev. E 65, 040301 (2002)

    Article  ADS  Google Scholar 

  63. Antal, T., Droz, M., Lipowski, A.: Exponential velocity tails in a driven inelastic Maxwell model. Phys. Rev. E 66, 062301 (2002)

    Article  ADS  Google Scholar 

  64. Santos, A., Ernst, M.H.: Exact steady-state solution of the Boltzmann equation: a driven one-dimensional inelastic Maxwell gas. Phys. Rev. E 68, 011305 (2003)

    Article  ADS  Google Scholar 

  65. Ernst, M.H., Brito, R.: Asymptotic Solutions of the Nonlinear Boltzmann Equation for Dissipative Systems. Springer, Berlin (2003)

    Book  Google Scholar 

  66. Ernst, M.H., Trizac, E., Barrat, A.: The rich behavior of the Boltzmann equation for dissipative gases. Europhys. Lett. 76(1), 56 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  67. Ernst, M.H., Trizac, E., Barrat, A.: The Boltzmann equation for driven systems of inelastic soft spheres. J. Stat. Phys. 124(2), 549–586 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. Barrat, A., Trizac, E., Ernst, M.H.: Quasi-elastic solutions to the nonlinear Boltzmann equation for dissipative gases. J. Phys. A 40(15), 4057 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Villani, C.: Mathematics of granular materials. J. Stat. Phys. 124(2), 781–822 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Prasad, V.V., Sabhapandit, S., Dhar, A.: High-energy tail of the velocity distribution of driven inelastic Maxwell gases. Europhys. Lett. 104(5), 54003 (2013)

    Article  ADS  Google Scholar 

  71. Prasad, V.V., Das, D., Sabhapandit, S., Rajesh, R.: Velocity distribution of a driven inelastic one-component Maxwell gas. Phys. Rev. E 95, 032909 (2017)

    Article  ADS  Google Scholar 

  72. Prasad, V.V., Das, D., Sabhapandit, S., Rajesh, R.: Velocity distribution of driven granular gases. J. Stat. Mech. Theory Exp. 2019(6), 063201 (2019)

    Article  Google Scholar 

  73. Prasad, V.V., Sabhapandit, S., Dhar, A.: Driven inelastic Maxwell gases. Phys. Rev. E 90, 062130 (2014)

    Article  ADS  Google Scholar 

  74. Montanero, M.J., Santos, A.: Computer simulation of uniformly heated granular fluids. Granul. Matter 2(2), 53–64 (2000)

    Article  Google Scholar 

  75. Biben, T., Martin, PhA, Piasecki, J.: Stationary state of thermostated inelastic hard spheres. Physica A 310(3), 308–324 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Prasad.

Additional information

Communicated by Abhishek Dhar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Large Moments of the Velocity Distribution

We determine the behavior of large moments when the velocity distribution has the asymptotic form:

$$\begin{aligned} P(v) \sim e^{-a |v|^\beta +\varPsi (v)},~~|v|\rightarrow \infty ,~a>0. \end{aligned}$$
(83)

where \(v^{-\beta } \varPsi (|v|)\rightarrow 0\) for \(|v|\rightarrow \infty \). The aim is to determine the moment \(\langle |v_1-v_2|^\delta v_1^{2n-k}v_2^k\rangle \) for large n and k. In the limit \(k \propto n\), we change variables to \(k=xn\) with \(0\le x\le 1\), to obtain

$$\begin{aligned} \langle |v_1-v_2|^\delta v_1^{2n-k}v_2^{k}\rangle\sim & {} \int dv_1dv_2|v_1-v_2|^\delta v_1^{(2-x)n}v_2^{xn}\nonumber \\&\times e^{-a|v_1|^\beta -a|v_2|^\beta +\varPsi (v_1)+\varPsi (v_2)} \end{aligned}$$
(84)

Rescaling the integration variables \(v_1\), and \(v_2\) as \(v_1=n^{1/\beta }t_1\) and \(v_2=n^{1/\beta }t_2\), Eq. (84) simplifies to

$$\begin{aligned} \langle |v_1-v_2|^\delta v_1^{2n-k}v_2^{k}\rangle&\sim n^{\frac{2+\delta + 2 n}{\beta }} \int dt_1dt_2e^{n[f(t_1)+ g(t_2)]}\nonumber \\&\quad \times |t_1-t_2|^\delta e^{\varPsi (n^{1/\beta }t_1)+\varPsi (n^{1/\beta }t_2)} \end{aligned}$$
(85)

where,

$$\begin{aligned} \begin{aligned} f(t_1)&=-at_1^\beta +(2-x)\ln t_1,\\ g(t_2)&=-at_2^\beta +x\ln t_2. \end{aligned} \end{aligned}$$
(86)

The integral in Eq. (85) may be evaluated using the saddle point approximation by maximizing \(f(t_1)\) and \(g(t_2)\) with respect to \(t_1\) and \(t_2\). Setting \(df(t_1)/dt_1=0\) and \(dg(t_2)/dt_2=0\), we obtain the solution \(t_1^*\) and \(t_2^*\) to be

$$\begin{aligned} t_1^*&=\left( \frac{2-x}{a\beta }\right) ^\frac{1}{\beta }, \end{aligned}$$
(87)
$$\begin{aligned} t_2^*&=\left( \frac{x}{a\beta }\right) ^\frac{1}{\beta }, \end{aligned}$$
(88)

and

$$\begin{aligned} \begin{aligned} f(t_1^*)&=\frac{2-x}{\beta }\ln \left( \frac{2-x}{ae\beta }\right) ,\\ g(t_2^*)&=\frac{x}{\beta }\ln \left( \frac{x}{ae\beta }\right) . \end{aligned} \end{aligned}$$
(89)

Doing the saddle point integration in Eq. (85) obtain

$$\begin{aligned} \langle |v_1-v_2|^\delta v_1^{2n-k}v_2^k\rangle&\sim \frac{n^\frac{2+\delta }{\beta }}{n}\left( \frac{n}{2ae\beta }\right) ^\frac{2n}{\beta }\nonumber \\&\quad \times e^{n\left[ \frac{2-x}{\beta }\ln (2-x)+ \frac{x}{\beta }\ln x\right] } e^{\varPsi (n^{1/\beta }t_1^*)+\varPsi (n^{1/\beta }t_2^*)}, \end{aligned}$$
(90)

where the extra factor of n appears in the denominator of the left hand side of Eq. (90) because of the two-dimensional saddle point integration.

In a similar way one can find the asymptotic form for \(\langle |v_1-v_2|^\delta v_1^{2n}\rangle \) for large n. Consider the equality,

$$\begin{aligned} \langle |v-v_1|^\delta v^{2n}\rangle =\int dvdv_1P(v)P(v_1)|v-v_1|^\delta v^{2n}. \end{aligned}$$
(91)

As we are interested in the large n, the moments are dominated by values of |v|. In this limit it is possible to approximate, \(|v-v_1|\approx |v|\), and Eq. (91) reduces to

$$\begin{aligned} \langle |v-v_1|^\delta v^{2n}\rangle \sim \int dvP(v)|v|^{2n+\delta } . \end{aligned}$$
(92)

Doing a transformation, \(v=n^{1/\beta }t\) as before, we obtain

$$\begin{aligned} \langle |v-v_1|^\delta v^{2n}\rangle \sim n^{\frac{1+\delta }{\beta }}\int dte^{nf(t)+\varPsi (n^{1/\beta }t)}n^{2n/\beta } \end{aligned}$$
(93)

where,

$$\begin{aligned} f(t)=-at^\beta +2\ln t \end{aligned}$$
(94)

Doing a saddle point integration with respect to t, by maximizing f(t), one obtains,

$$\begin{aligned} \langle |v{-}v_1|^\delta v^{2n}\rangle \approx n^{\frac{1+\delta }{\beta }}\sqrt{\frac{2\pi }{f''(t^*)n}}{t^*}^\delta \left( \frac{2n}{ae\beta }\right) ^{\frac{2n}{\beta }} e^{\varPsi (n^{\frac{1}{\beta }}t^*)}~~ \end{aligned}$$
(95)

where we have substituted, the maximal value of f(t),

$$\begin{aligned} f(t^*)=\frac{2}{\beta }\ln \left( \frac{2}{ae\beta }\right) , \end{aligned}$$
(96)

and

$$\begin{aligned} t^*=\left( \frac{2}{a\beta }\right) ^\frac{1}{\beta }. \end{aligned}$$
(97)

The same calculation may be used to determine the asymptotic behavior of the noise distribution. Considering the noise distribution with the form as in Eq. (15),

$$\begin{aligned} \varPhi (\eta )\sim |\eta |^{\tilde{\chi }}e^{-b|\eta |^\gamma } \text {for} |\eta |^2 \gg \langle \eta ^2\rangle _\varPhi , \end{aligned}$$
(98)

then

$$\begin{aligned} N_{2n} = \langle \eta ^{2n}\rangle \approx n^{\frac{1+\tilde{\chi }}{\gamma }}\sqrt{\frac{2\pi }{g''(y^*)n}}{y^*}^{\tilde{\chi }} \left[ \frac{2 n}{b e \gamma }\right] ^{\frac{2 n}{\gamma }}. \end{aligned}$$
(99)

where,

$$\begin{aligned} g(y)=-by^\gamma +2\ln y \end{aligned}$$
(100)

and

$$\begin{aligned} y^*=\left( \frac{2}{b\gamma }\right) ^\frac{1}{\gamma }. \end{aligned}$$
(101)

Appendix B: Taylor Expansion of the Terms in Eq. (11) Arising from Driving

In this appendix, we analyse the terms [the last two terms] of Eq. (11) arising from driving—which we denote by I—for \(r_w=1\):

$$\begin{aligned} I=-\lambda _d P(v) + \lambda _d \int \int d\eta dv_1 \varPhi (\eta ) P(v_1) \delta \left[ - v_1+\eta -v \right] , \end{aligned}$$
(102)

by Taylor expanding the term in the integrand, and using the solution for the velocity distribution that we have obtained in the paper to identify the most dominant term in the expansion. Integrating over \(v_1\), we obtain

$$\begin{aligned} I=-\lambda _d P(v) + \lambda _d \int d\eta \varPhi (\eta ) P(v - \eta ). \end{aligned}$$
(103)

Taylor expanding \(P(v-\eta )\) about \(\eta =0\) and integrating over \(\eta \), Eq. (103) reduces to

$$\begin{aligned} I=\lambda _d \sum _{k=1}^\infty \frac{\langle \eta ^{2 k} \rangle }{(2 k)!} \frac{d^{2k}}{d v^{2k}} P(v)\equiv \sum _{k=1}^\infty t_k. \end{aligned}$$
(104)

We now determine the dominant term in this expansion, given that P(v) has the asymptotic behaviour as given in Eqs. (3)–(7).

From Eqs. (3)–(7), the velocity distribution has the asymptotic form

$$\begin{aligned} \ln P(v) \sim -a |v|^\beta (\ln |v|)^\theta , \quad |v| \rightarrow \infty , \end{aligned}$$
(105)

where \(\theta >0\) for \(\gamma >1\), \(\delta >0\), and \(\theta =0\) otherwise. Thus,

$$\begin{aligned} \frac{d^{2k}}{d v^{2k}} P(v) \approx \left[ a \beta v^{\beta -1} (\ln |v|)^\theta \right] ^{2 k} P(v), \quad |v| \rightarrow \infty . \end{aligned}$$
(106)

The asymptotic form for the moments of \(\eta \) is given in Eq. (22). Using these asymptotic forms, we obtain the ratio of successive terms in Eq. (104) to be

$$\begin{aligned} \frac{t_{k+1}}{t_k} \approx \left( \frac{2 }{b \gamma }\right) ^{\frac{2}{\gamma }} \frac{\left[ a \beta v^{\beta -1} (\ln |v|)^\theta \right] ^{2} }{4} k^{\frac{2(1-\gamma )}{\gamma }}. \end{aligned}$$
(107)

We now analyse Eq. (107) for different cases.

Case I\(\delta \le 0\): From Eq. (3), we know that \(\theta =0\) and \(\beta =\min \left[ \frac{2 + \delta }{2}, \gamma \right] \). When \(\delta <0\), then \(\beta <1\). Thus, for large v, the ratio in Eq. (107) is much smaller than 1 for small k. Also, for \(\gamma >1\), the ratio decreases with k. Thus, the truncation at the first term is valid, and the expression for \(\beta \) may be obtained from the continuum equations. However, when \(\gamma <1\), it is possible that the expansion may break down as there could be contribution from large derivatives. Indeed, from comparing with our analytic solution, for \(\gamma < 1+\delta /2\), the Taylor expansion about small \(\eta \) breaks down. When \(\delta =0\), then \(\beta =1\). For \(\gamma >1\), the most dominant term in the expansion, determined by \(t_{k+1}/t_k = 1\), is a \(k^*\) that is independent of v. Then, it is straightforward to show that \(\beta =1\) is a consistent solution. Thus, while the dominant term in the expansion is not the first term, the result obtained from the continuum equations do not change.

Case II\(\delta > 0\): Now, for \(\gamma >1\), the solution of\(t_{k^*+1}/t_{k^*} =1\) is given by \(k^* \propto (\ln |v|)^{\frac{\theta \gamma }{\gamma -1}}\). Now, \(k^*\) depends on v, and it is clear that truncating the Taylor expansion at the first term will lead to wrong results. In fact, truncating at the first term gives \(\beta = (2+\delta )/2\), while we have derived, without making any approximations, \(\beta =1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, V.V., Rajesh, R. Asymptotic Behavior of the Velocity Distribution of Driven Inelastic Gas with Scalar Velocities: Analytical Results. J Stat Phys 176, 1409–1433 (2019). https://doi.org/10.1007/s10955-019-02347-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02347-8

Keywords

Navigation