Skip to main content
Log in

A Kinetic Description for the Herding Behavior in Financial Market

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

As a continuation of the study of the herding model proposed in (Bae et al. in arXiv:1712.01085, 2017), we consider in this paper the derivation of the kinetic version of the herding model, the existence of the measure-valued solution and the corresponding herding behavior at the kinetic level. We first consider the mean-field limit of the particle herding model and derive the existence of the measure-valued solutions for the kinetic herding model. We then study the herding phenomena of the solutions in two different ways by introducing two different types of herding energy functionals. First, we derive a herding phenomena of the measure-valued solutions under virtually no restrictions on the parameter sets using the Barbalat’s lemma. We, however, don’t get any herding rate in this case. On the other hand, we also establish a Grönwall type estimate for another herding functional, leading to the exponential herding rate, under comparatively strict conditions. These results are then extended to smooth solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, S.-M., Bae, H.-O., Ha, S.-Y., Kim, Y., Lim, H.: Application of flocking mechanism to the modeling of stochastic volatility. Math. Models Methods Appl. Sci. 23, 1603–1628 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bae, H.-O., Cho, S.-Y., Lee, S.-H., Yun, S.-B.: A particle model for the herding phenomena induced by dynamic market signals. arXiv:1712.01085 (2017)

  3. Bae, H.-O., Choi, Y.-P., Ha, S.-Y., Kang, M.-J.: Asymptotic flocking dynamics of Cucker–Smale particles immersed in compressible fluids. Discret. Contin. Dyn. Syst. 34(11), 4419–4458 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bae, H.-O., Choi, Y.-P., Ha, S.-Y., Kang, M.-J.: Time-asymptotic interaction of flocking particles and an incompressible viscous fluid. Nonlinearity 25(4), 1155 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bae, H.-O., Ha, S.-Y., Kim, Y., Lee, S.-H., Lim, H., Yoo, J.: A mathematical model for volatility flocking with a regime switching mechanism in a stock market. Math. Models Methods Appl. Sci. 25(7), 1299–1335 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barbalat, I.: Systemes d’équations différentielles d’oscillations non linéaires. Rev. Math. Pures Appl. 4(2), 267–270 (1959)

    MathSciNet  MATH  Google Scholar 

  7. Bellomo, N., Bellouquid, A., Knopoff, D.: From the micro-scale to collective crowd dynamics. SIAM Multiscale Model. Simul. 11(3), 943–963 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bellomo, N., Dogbe, C.: On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Rev. 53(3), 409–463 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bellomo, N., Gibelli, L.: Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds. Math. Models Methods Appl. Sci. 25(13), 2417–2437 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burini, D., De Lillo, S., Gibelli, L.: Collective learning modeling based on the kinetic theory of active particles. Phys. Life Rev. 16, 123–139 (2016)

    Article  ADS  Google Scholar 

  11. Carrillo, J.A., D’Orsogna, M.R., Panferov, V.: Double milling in self-propelled swarms from kinetic theory. Kinet. Relat. Models 2(2), 363–378 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Canizo, J.A., Carrillo, J.A., Rosado, J.: A well-posedness theory in measures for some kinetic models of collective motion. Math. Models Methods Appl. Sci. 21(03), 515–539 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carrillo, J.A., Fornasier, M., Rosado, J., Toscani, G.: Asymptotic flocking dynamics for the kinetic Cucker–Smale model. SIAM J. Math. Anal. 42(1), 218–236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carrillo, J.A., Fornasier, M., Toscani, G., Vecil, F.: Particle, Kinetic, and Hydrodynamic Models of Swarming. Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, pp. 297–336. Birkhäuser, Boston (2010)

    MATH  Google Scholar 

  15. Carrillo, J.A., Klar, A., Martin, S., Tiwari, S.: Self-propelled interacting particle systems with roosting force. Math. Models Methods Appl. Sci. 20(suppl. 1), 1533–1552 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Choi, Y.-P., Ha, S.-Y., Li, Z.: Emergent dynamics of the Cucker–Smale flocking model and its variants. In: Active Particles. Vol. 1. Advances in Theory, Models, and Applications, pp. 299–331. Modeling and Simulation in Science, Engineering and Technology, Birkhäuser/Springer, Cham (2017)

  17. Cordier, S., Pareschi, L., Toscani, G.: On a kinetic model for a simple market economy. J. Stat. Phys. 120(1–2), 253–277 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. JTB 218(1), 1–11 (2002)

    Article  MathSciNet  Google Scholar 

  19. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852–862 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Degond, P., Appert-Rolland, C., Moussaid, M., Pettré, J., Theraulaz, G.: A hierarchy of heuristic-based models of crowd dynamics. J. Stat. Phys. 152(6), 1033–1068 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18(1), 1193–1215 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dolfin, M., Leonida, L., Outada, N.: Modeling human behavior in economics and social science. Phys. Life Rev. 22, 1–21 (2017)

    Article  Google Scholar 

  23. D’Orsogna, M.R., Chuang, Y.L., Bertozzi, A.L., Chayes, L.S.: Self-propelled particles with soft-core interactions, patterns, stability, and collapse. Phys. Rev. Lett. 96(10), 104302 (2006)

    Article  ADS  Google Scholar 

  24. During, B., Jungel, A., Trussardi, L.: A kinetic equation for economic value estimate with irrationality and herding. Kinet. Relat. Models 10, 239–261 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Figalli, A., Kang, M.-J.: A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment. Anal. PDE 12(3), 843–866 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ha, S.-Y., Liu, J.-G.: A simple proof of the Cucker–Smale flocking dynamics and mean-field limit. Commun. Math. Sci. 7(2), 297–325 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ha, S.-Y., Tadmor, E.: From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat. Models 1(3), 415–435 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Helbing, D., Molnar, P.: Self-organization phenomena in pedestrian crowds. arXiv:cond-mat/9806152 (1998)

  29. Kang, J.-H., Ha, S.-Y., Kang, K., Jeong, E.: How do cultural classes emerge from assimilation and distinction? An extension of the Cucker–Smale flocking model. J. Math. Sociol. 38, 47–71 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Karper, T.K., Mellet, A., Trivisa, K.: Hydrodynamic limit of the kinetic Cucker–Smale flocking model. Math. Models Methods Appl. Sci. 25(01), 131–163 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Marsan, G.A., Bellomo, N., Gibelli, L.: Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics. Math. Models Methods Appl. Sci. 26(06), 1051–1093 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mirabet, V., Auger, P., Lett, C.: Spatial structures in simulations of animal grouping. Ecol. Model. 201(3–4), 468–476 (2007)

    Article  Google Scholar 

  33. Motsch, S., Tadmor, E.: A new model for self-organized dynamics and its flocking behavior. J. Stat. Phys. 144(5), 923–947 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Naldi, G., Pareschi, L., Toscani, G. (eds.). Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Springer, Berlin (2010)

  35. Nelson, P., Sopasakis, A.: The Prigogine–Herman kinetic model predicts widely scattered traffic flow data at high concentrations. Transp. Res. Part B: Methodol. 32(8), 589–604 (1998)

    Article  Google Scholar 

  36. Pareschi, L., Toscani, G.: Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  37. Prigogine, I., Herman, R.: Kinetic Theory of Vehicular Traffic. American Elsevier Publishing, New York (1971)

    MATH  Google Scholar 

  38. Toscani, G.: Kinetic models of opinion formation. Commun. Math. Sci. 4(3), 481–496 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  40. Villani, C.: Optimal Transport, Old and New. Springer, Berlin (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

Bae was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2018R1D1A1A09082848). Yun is supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1801-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Bae Yun.

Additional information

Communicated by Eric Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, HO., Cho, SY., Kim, J. et al. A Kinetic Description for the Herding Behavior in Financial Market. J Stat Phys 176, 398–424 (2019). https://doi.org/10.1007/s10955-019-02305-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02305-4

Keywords

Navigation