Skip to main content
Log in

A Particle Model for the Herding Phenomena Induced by Dynamic Market Signals

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study herding phenomena of agents in financial markets arising from the combined effect of (1) non-coordinated collective interactions between agents and (2) concurrent reactions of agents to dynamic market signals. By interpreting the expected price of an asset and the favorability on the asset as the position and the velocity in phase space, respectively, we construct an agent-based particle model for explaining herding behavior in finance. We then define two types of herding functionals to this model, and show that they satisfy a Gronwall type estimate and a LaSalle type invariance property, respectively. As a result, we show the herding behavior of the agents. Various numerical tests are presented to numerically verify theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source Tick History provided by Thomson Reuters Datascope Select

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Abreu, D., Brunnermeier, M.K.: Bubbles and crashes. Econometrica 71, 173–204 (2003)

    Article  MathSciNet  Google Scholar 

  2. Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137 (2005)

    Article  ADS  Google Scholar 

  3. Ahn, S., Choi, H., Ha, S.-Y., Lee, H.: On collision-avoiding initial configurations to Cucker–Smale type flocking models. Commun. Math. Sci. 10, 625–643 (2012)

    Article  MathSciNet  Google Scholar 

  4. Ahn, S., Bae, H.-O., Ha, S.-Y., Kim, Y., Lim, H.: Application of flocking mechanism to the modeling of stochastic volatility. Math. Models Methods Appl. Sci. 23, 1603–1628 (2013)

    Article  MathSciNet  Google Scholar 

  5. Avery, C., Zemsky, P.: Multidimensional uncertainty and herd behavior in financial markets. Am. Econ. Rev. 88(4), 724–748 (1998)

    Google Scholar 

  6. Bae, H.-O., Ha, S.-Y., Kim, Y., Lee, S.-H., Lim, H., Yoo, J.: A mathematical model for volatility flocking with a regime switching mechanism in a stock market. Math. Models Methods Appl. Sci. 25, 1299–1335 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bae, H.-O., Cho, S.-Y., Kim, J., Yun, S.-B.: A kinetic description for the herding behavior in financial market. J. Stat. Phys (2019). https://doi.org/10.1007/s10955-019-02305-4

    Article  ADS  MathSciNet  Google Scholar 

  8. Banerjee, A.V.: A simple model of herd behavior. Q. J. Econ. 107, 797–818 (1992)

    Article  Google Scholar 

  9. Barbaro, A.B.T., Taylor, K., Trethewey, P.F., Youseff, L., Birnir, B.: Discrete and continuous models of the dynamics of pelagic fish. Math. Comput. Simul. 79, 3397–3414 (2009)

    Article  MathSciNet  Google Scholar 

  10. Bellomo, N., Bellouquid, A., Nieto, J., Soler, J.: Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems. Math. Models Methods Appl. Sci. 20, 1179–1207 (2010)

    Article  MathSciNet  Google Scholar 

  11. Bellomo, N., Dogbe, C.: On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Rev. 53(3), 409–463 (2011)

    Article  MathSciNet  Google Scholar 

  12. Bikhchandani, S., Hirshleifer, D., Welch, I.: A theory of fads, fashion, custom and cultural change as informational cascades. J. Polit. Econ. 100, 992–1027 (1992)

    Article  Google Scholar 

  13. Brunnermeier, M.K.: Asset Pricing under Asymmetric. Information Crashes, Technical Analysis and Herding. Oxford University Press on Demand, Bubbles (2001)

    Book  Google Scholar 

  14. Burger, M., Markowich, P., Pietschmann, J.-F.: Continuous limit of a crowd motion and herding model: analysis and numerical simulations. Kinet. Relat. Models 4, 1025–1047 (2011)

    Article  MathSciNet  Google Scholar 

  15. Burini, D., De Lillo, S., Gibelli, L.: Collective learning modeling based on the kinetic theory of active particles. Phys. Life Rev. 16, 123–139 (2016)

    Article  ADS  Google Scholar 

  16. Carrillo, J.A., Fornasier, M., Rosado, J., Toscani, G.: Asymptotic flocking dynamics for the kinetic Cucker–Smale model. SIAM J. Math. Anal. 42, 218–236 (2010)

    Article  MathSciNet  Google Scholar 

  17. Carrillo, J.A., Choi, Y.-P., Mucha, P.B., Peszek, J.: Sharp conditions to avoid collisions in singular Cucker–Smale interactions. Nonlinear Anal. Real World Appl. 37, 317–328 (2017)

    Article  MathSciNet  Google Scholar 

  18. Carrillo, J.A., Fornasier, M., Toscani, G., Vecil, F.: Particle, kinetic, and hydrodynamic models of swarming. In: Mathematical Modeling of Collective Behavior in Socio-economic and Life Sciences, pp. 297–336. Birkhäuser, Boston (2010)

    Chapter  Google Scholar 

  19. Cavagna, A., Cimarelli, A., Giardina, I., Parisi, G., Santagati, R., Stefanini, F., Tavarone, R.: From empirical data to inter-individual interactions: unveiling the rules of collective animal behavior. Math. Models Methods Appl. Sci. 20, 1491–1510 (2010)

    Article  MathSciNet  Google Scholar 

  20. Choi, Y.-P., Ha, S.-Y., Li, Z.: Emergent dynamics of the Cucker–Smale flocking model and its variants. Active particles. Vol. 1. Advances in Theory, Models, and Applications. Modeling Simulation Sci. Eng. Technology, pp. 299–331. Birkhäuser/Springer, Cham (2017)

    Chapter  Google Scholar 

  21. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52, 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  22. Cucker, F., Smale, S.: On the mathematics of emergence. Jpn. J. Math. 2, 197–227 (2007)

    Article  MathSciNet  Google Scholar 

  23. Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18, 1193–1215 (2008)

    Article  MathSciNet  Google Scholar 

  24. Degond, P., Appert-Rolland, C., Moussaid, M., Pettré, J., Theraulaz, G.: A hierarchy of heuristic-based models of crowd dynamics. J. Stat. Phys 152(6), 1033–1068 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. Delitala, M., Lorenzi, T.: A mathematical model for value estimation with public information and herding. Kinet. Relat. Models 7, 29–44 (2014)

    Article  MathSciNet  Google Scholar 

  26. D’Orsogna, M.R., Chuang, Y.L., Bertozzi, A.L., Chayes, L.S.: Self-propelled particles with soft-core interactions, patterns, stability, and collapse. Phys. Rev. Lett. 96(10), 104302 (2006)

    Article  ADS  Google Scholar 

  27. Devenow, A., Welch, I.: Rational herding in financial economics. Eur. Econ. Rev. 40, 603–615 (1996)

    Article  Google Scholar 

  28. During, B., Jungel, A., Trussardi, L.: A kinetic equation for economic value estimate with irrationality and herding. Kinet. Relat. Models 10, 239–261 (2017)

    Article  MathSciNet  Google Scholar 

  29. Ha, S.-Y., Tadmor, E.: From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat. Models 1, 415–435 (2008)

    Article  MathSciNet  Google Scholar 

  30. Ha, S.-Y., Liu, J.G.: A simple proof of the Cucker–Smale flocking dynamics and mean-field limit. Commun. Math. Sci. 7, 297–325 (2009)

    Article  MathSciNet  Google Scholar 

  31. Ha, S.-Y., Lee, K., Levy, D.: Emergence of time-asymptotic flocking in a stochastic Cucker–Smale system. Commun. Math. Sci. 7, 453–469 (2009)

    Article  MathSciNet  Google Scholar 

  32. Ha, S.-Y., Ha, T., Kim, J.-H.: On the complete synchronization of the Kuramoto phase model. Physica D 239(17), 1692–1700 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  33. Hegselmann, R., Flache, A.: Understanding complex social dynamics: a plea for cellular automata based modelling. J. Artif. Soc. Soc. Simul. 1(3), 1 (1998)

    Google Scholar 

  34. Hemphill, C.S., Suk, J.: The law, culture, and economics of fashion. Stan. L. Rev. 61, 1147–1200 (2009)

    Google Scholar 

  35. Hwang, S., Salmon, M.: Market stress and herding. J. Empir. Financ. 11, 585–616 (2004)

    Article  Google Scholar 

  36. Krause, U.: A discrete nonlinear and non-autonomous model of consensus formation. Commun. Differ. Equ. 2000, 227–236 (2000)

    Article  MathSciNet  Google Scholar 

  37. LaSalle, J.P.: Some extensions of Liapunov’s second method. IRE Trans. 7, 520–527 (1960)

    MathSciNet  Google Scholar 

  38. Lee, I.H.: Market crashes and informational avalance. The Rev. Econ. Stud. 65, 741–759 (1995)

    Article  Google Scholar 

  39. Marsan, G.A., Bellomo, N., Egidi, M.: Towards a mathematical theory of complex socio-economical systems by functional subsystems representation. Kinet. Relat. Models 1(2), 249–278 (2008)

    Article  MathSciNet  Google Scholar 

  40. Merton, R.C., Samuelson, P.A.: Continuous-Time Finance. Blackwell Publishing, New Jersey (1992)

    Google Scholar 

  41. Milgrom, P.R., Stokey, N.: Information, trade and common knowledge. J. Econ. Theory 26, 17–27 (1982)

    Article  Google Scholar 

  42. Motsch, S., Tadmor, E.: A new model for self-organized dynamics and its flocking behavior. J. Stat. Phys. 144, 923–947 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  43. Naldi, G., Pareschi, L., Toscani, G. (eds.): Mathematical modeling of collective behavior in socio-economic and life sciences. Springer, Berlin (2010)

    MATH  Google Scholar 

  44. Pareschi, L., Toscani, G.: Interacting Multiagent Systems: kinetic equations and Monte Carlo methods. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  45. Santos, M.S., Woodford, M.: Rational asset pricing bubbles. Econometrica 65, 19–57 (1997)

    Article  Google Scholar 

  46. Shiller, C.: Irational exuberance. Princeton University Press, Princeton (2000)

    Google Scholar 

  47. Tirole, J.: On the possibility of speculation under rational expectations. Econometrica 50, 1163–1182 (1982)

    Article  Google Scholar 

  48. Toner, J., Tu, Y.: Flocks, herds, and schools: a quantitative theory of flocking. Phys. Rev. E 58, 4828–4858 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  49. Toscani, G.: Kinetic models of opinion formation. Commun. Math. Sci. 4, 481–496 (2006)

    Article  MathSciNet  Google Scholar 

  50. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

H.-O. Bae was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2018R1D1A1A09082848). S.-B. Yun was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2016R1D1A1B03935955). J. Yoo was supported by the Social Science Research Program by (NRF-2017S1A5A8022379).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok-Bae Yun.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, HO., Cho, Sy., Lee, Sh. et al. A Particle Model for the Herding Phenomena Induced by Dynamic Market Signals. J Stat Phys 177, 365–398 (2019). https://doi.org/10.1007/s10955-019-02371-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02371-8

Keywords

Navigation