Skip to main content
Log in

Universality for 1d Random Band Matrices: Sigma-Model Approximation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The paper continues the development of the rigorous supersymmetric transfer matrix approach to the random band matrices started in (J Stat Phys 164:1233–1260, 2016; Commun Math Phys 351:1009–1044, 2017). We consider random Hermitian block band matrices consisting of \(W\times W\) random Gaussian blocks (parametrized by \(j,k \in \Lambda =[1,n]^d\cap \mathbb {Z}^d\)) with a fixed entry’s variance \(J_{jk}=\delta _{j,k}W^{-1}+\beta \Delta _{j,k}W^{-2}\), \(\beta >0\) in each block. Taking the limit \(W\rightarrow \infty \) with fixed n and \(\beta \), we derive the sigma-model approximation of the second correlation function similar to Efetov’s one. Then, considering the limit \(\beta , n\rightarrow \infty \), we prove that in the dimension \(d=1\) the behaviour of the sigma-model approximation in the bulk of the spectrum, as \(\beta \gg n\), is determined by the classical Wigner–Dyson statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao, J., Erdös, L.: Delocalization for a class of random block band matrices. Probab. Theory Relat. 167(3–4), 673–776 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berezin, F.A.: Introduction to the Algebra and Analysis of Anticommuting Variables. Moscow State University Publ, Moscow (1983). (Russian)

    Google Scholar 

  3. Bogachev, L.V., Molchanov, S.A., Pastur, L.A.: On the level density of random band matrices. Mat. Zametki 50(6), 31–42 (1991)

    MATH  Google Scholar 

  4. Bourgade, P., Erdös, L., Yau, H.-T., Yin, J.: Universality for a class of random band matrices. Adv. Theor. Math. Phys. 21(3), 739–800 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Casati, G., Molinari, L., Israilev, F.: Scaling properties of band random matrices. Phys. Rev. Lett. 64, 1851–1854 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Disertori, M., Lager, M.: Density of states for random band matrices in two dimensions. Ann. Henri Poincare 18(7), 2367–2413 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Disertori, M., Pinson, H., Spencer, T.: Density of states for random band matrices. Commun. Math. Phys. 232, 83–124 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Disertori, M., Spencer, T., Zirnbauer, M. R.: Supersymmetric 1d sigma model, unpublished

  9. Efetov, K.: Supersymmetry in Disorder and Chaos. Cambridge University Press, New York (1997)

    MATH  Google Scholar 

  10. Erdös, L., Knowles, A.: Quantum diffusion and eigenfunction delocalization in a random band matrix model. Commun. Math. Phys. 303, 509–554 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Erdös, L., Knowles, A., Yau, H.-T., Yin, J.: Delocalization and diffusion profile for random band matrices. arXiv:1205.5669v1

  12. Erdös, L., Yau, H.-T., Yin, J.: Bulk universality for generalized Wigner matrices. Preprint arXiv:1001.3453

  13. Fyodorov, Y.V.: Negative moments of characteristic polynomials of random matrices: Ingham–Siegel integral as an alternative to Hubbard–Stratonovich transformation. Nucl. Phys. B 621, 643–674 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Fyodorov, Y.V., Mirlin, A.D.: Scaling properties of localization in random band matrices: a \(\sigma \)-model approach. Phys. Rev. Lett. 67, 2405–2409 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Fyodorov, Y.V., Mirlin, A.D.: Statistical properties of eigenfunctions of random quasi 1d one-particle Hamiltonians. Int. J. Mod. Phys. B 8, 3795–3842 (1994)

    Article  ADS  Google Scholar 

  16. Molchanov, S.A., Pastur, L.A., Khorunzhii, A.M.: Distribution of the eigenvalues of random band matrices in the limit of their infinite order. Theor. Math. Phys. 90, 108–118 (1992)

    Article  MathSciNet  Google Scholar 

  17. Peled, R., Schenker, J. , Shamis, M., Sodin, A.: On the Wegner orbital model. arXiv:1608.02922

  18. Schenker, J.: Eigenvector localization for random band matrices with power law band width. Commun. Math. Phys. 290, 1065–1097 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Shcherbina, M., Shcherbina, T.: Transfer matrix approach to 1d random band matrices: density of states. J. Stat. Phys. 164, 1233–1260 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Shcherbina, M., Shcherbina, T.: Characteristic polynomials for 1d random band matrices from the localization side. Commun. Math. Phys. 351, 1009–1044 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Shcherbina, T.: On the second mixed moment of the characteristic polynomials of the 1D band matrices. Commun. Math. Phys. 328, 45–82 (2014). arXiv:1209.3385

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Shcherbina, T.: Universality of the local regime for the block band matrices with a finite number of blocks. J. Stat. Phys. 155(3), 466–499 (2014). arXiv:1309.2120

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Sodin, S.: An estimate for the average spectral measure of random band matrices. J. Stat. Phys. 144, 46–59 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Spencer, T.: SUSY statistical mechanics and random band matrices. Quantum many body system, Cetraro, Italy 2010, Lecture notes in mathematics 2051 (CIME Foundation subseries) (2012)

  25. Tao, T., Vu, V.: Random matrices: Universality of the local eigenvalue statistics. Acta Math. 206, 127–204 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vilenkin, N.J.: Special Functions and the Theory of Group Representations. Translations of Mathematical Monographs, AMS, p. 613 (1968)

  27. Wegner, F.J.: Disordered system with \(n\) orbitals per site: \(n \rightarrow \infty \) limit. Phys. Rev. B 19, 783–792 (1979)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to Yan Fyodorov for his suggestion of this particular model for the derivation of sigma-model approximation for RBM. TS would like to thank Tom Spencer for his explanation of the nature of sigma-model approximation and for many fruitful discussions without that this paper would never have been written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Shcherbina.

Additional information

This paper is dedicated to Tom Spencer on the occasion of his 70th birthday.

T. Shcherbina was supported in part by NSF Grant DMS-1700009.

Appendix

Appendix

1.1 Grassmann integration

Let us consider two sets of formal variables \(\{\psi _j\}_{j=1}^n,\{\overline{\psi }_j\}_{j=1}^n\), which satisfy the anticommutation conditions

$$\begin{aligned} \psi _j\psi _k+\psi _k\psi _j=\overline{\psi }_j\psi _k+\psi _k\overline{\psi }_j=\overline{\psi }_j\overline{\psi }_k+ \overline{\psi }_k\overline{\psi }_j=0,\quad j,k=1,\ldots ,n. \end{aligned}$$
(7.1)

Note that this definition implies \(\psi _j^2=\overline{\psi }_j^2=0\). These two sets of variables \(\{\psi _j\}_{j=1}^n\) and \(\{\overline{\psi }_j\}_{j=1}^n\) generate the Grassmann algebra \(\mathfrak {A}\). Taking into account that \(\psi _j^2=0\), we have that all elements of \(\mathfrak {A}\) are polynomials of \(\{\psi _j\}_{j=1}^n\) and \(\{\overline{\psi }_j\}_{j=1}^n\) of degree at most one in each variable. We can also define functions of the Grassmann variables. Let \(\chi \) be an element of \(\mathfrak {A}\), i.e.

$$\begin{aligned} \chi =a+\sum \limits _{j=1}^n (a_j\psi _j+ b_j\overline{\psi }_j)+\sum \limits _{j\ne k} (a_{j,k}\psi _j\psi _k+ b_{j,k}\psi _j\overline{\psi }_k+ c_{j,k}\overline{\psi }_j\overline{\psi }_k)+\ldots . \end{aligned}$$
(7.2)

For any sufficiently smooth function f we define by \(f(\chi )\) the element of \(\mathfrak {A}\) obtained by substituting \(\chi -a\) in the Taylor series of f at the point a. Since \(\chi \) is a polynomial of \(\{\psi _j\}_{j=1}^n\), \(\{\overline{\psi }_j\}_{j=1}^n\) of the form (7.2), according to (7.1) there exists such l that \((\chi -a)^l=0\), and hence the series terminates after a finite number of terms and so \(f(\chi )\in \mathfrak {A}\).

Following Berezin [2], we define the operation of integration with respect to the anticommuting variables in a formal way:

$$\begin{aligned} \displaystyle \int d\,\psi _j=\displaystyle \int d\,\overline{\psi }_j=0,\quad \displaystyle \int \psi _jd\,\psi _j=\displaystyle \int \overline{\psi }_jd\,\overline{\psi }_j=1, \end{aligned}$$

and then extend the definition to the general element of \(\mathfrak {A}\) by the linearity. A multiple integral is defined to be a repeated integral. Assume also that the “differentials” \(d\,\psi _j\) and \(d\,\overline{\psi }_k\) anticommute with each other and with the variables \(\psi _j\) and \(\overline{\psi }_k\). Thus, according to the definition, if

$$\begin{aligned} f(\psi _1,\ldots ,\psi _k)=p_0+\sum \limits _{j_1=1}^k p_{j_1}\psi _{j_1}+\sum \limits _{j_1<j_2}p_{j_1,j_2}\psi _{j_1}\psi _{j_2}+ \ldots +p_{1,2,\ldots ,k}\psi _1\ldots \psi _k, \end{aligned}$$

then

$$\begin{aligned} \displaystyle \int f(\psi _1,\ldots ,\psi _k)d\,\psi _k\ldots d\,\psi _1=p_{1,2,\ldots ,k}. \end{aligned}$$

Let A be an ordinary Hermitian matrix with positive real part. The following Gaussian integral is well-known

$$\begin{aligned} \displaystyle \int \exp \Big \{-\sum \limits _{j,k=1}^nA_{jk}z_j\overline{z}_k\Big \} \prod \limits _{j=1}^n\dfrac{d\,\mathfrak {R}z_jd\,\mathfrak {I}z_j}{\pi }=\dfrac{1}{\mathrm {det}A}. \end{aligned}$$
(7.3)

One of the important formulas of the Grassmann variables theory is the analog of this formula for the Grassmann algebra (see [2]):

$$\begin{aligned} \int \exp \Big \{-\sum \limits _{j,k=1}^nA_{jk}\overline{\psi }_j\psi _k\Big \} \prod \limits _{j=1}^nd\,\overline{\psi }_jd\,\psi _j=\mathrm {det}A, \end{aligned}$$
(7.4)

where A now is any \(n\times n\) matrix.

We will also need the following bosonization formula

Proposition 7.1

(see [13]) Let F be some function that depends only on combinations

$$\begin{aligned} \bar{\phi }\phi :=\Big \{\sum \limits _{\alpha =1}^W \bar{\phi }_{l\alpha }\phi _{s\alpha }\Big \}_{l,s=1}^2, \end{aligned}$$

and set

$$\begin{aligned} d\Phi =\prod \limits _{l=1}^2\prod \limits _{\alpha =1}^W d\mathfrak {R}\phi _{l\alpha } d\mathfrak {I}\phi _{l\alpha }. \end{aligned}$$

Assume also that \(W\ge 2\). Then

$$\begin{aligned} \int F\left( \bar{\phi }\phi \right) d\Phi =\dfrac{\pi ^{2W-1}}{(W-1)!(W-2)!}\int F(B)\cdot \mathrm {det}^{W-2} B \,dB, \end{aligned}$$

where B is a \(2\times 2\) positive Hermitian matrix, and

$$\begin{aligned} dB&=\mathbf {1}_{B>0}dB_{11}dB_{22}d\mathfrak {R}B_{12} d\mathfrak {I}B_{12}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbina, M., Shcherbina, T. Universality for 1d Random Band Matrices: Sigma-Model Approximation. J Stat Phys 172, 627–664 (2018). https://doi.org/10.1007/s10955-018-1969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-1969-1

Keywords

Navigation