Skip to main content
Log in

Random matrices: Universality of local eigenvalue statistics

  • Published:
Acta Mathematica

Abstract

In this paper, we consider the universality of the local eigenvalue statistics of random matrices. Our main result shows that these statistics are determined by the first four moments of the distribution of the entries. As a consequence, we derive the universality of eigenvalue gap distribution and k-point correlation, and many other statistics (under some mild assumptions) for both Wigner Hermitian matrices and Wigner real symmetric matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, G., Guionnet, A. & Zeitouni, O., An Introduction to Random Matrices. To appear by Cambridge University Press.

  2. Bai, Z. & Silverstein, J. W., Spectral Analysis of Large Dimensional Random Matrices. Springer Series in Statistics. Springer, New York, 2010.

    Book  MATH  Google Scholar 

  3. Bai, Z. D. & Yin, Y. Q., Convergence to the semicircle law. Ann. Probab., 16 (1988), 863–875.

    Article  MATH  MathSciNet  Google Scholar 

  4. — Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix. Ann. Probab., 16 (1988), 1729–1741.

    Article  MATH  MathSciNet  Google Scholar 

  5. Ben Arous, G. & Péché, S., Universality of local eigenvalue statistics for some sample covariance matrices. Comm. Pure Appl. Math., 58 (2005), 1316–1357.

    Article  MATH  MathSciNet  Google Scholar 

  6. Bleher, P. & Its, A., Semiclassical asymptotics of orthogonal polynomials, Riemann–Hilbert problem, and universality in the matrix model. Ann. of Math., 150 (1999), 185–266.

    Article  MATH  MathSciNet  Google Scholar 

  7. Bleher, P. & Kuijlaars, A. B. J., Large n limit of Gaussian random matrices with external source. I. Comm. Math. Phys., 252 (2004), 43–76.

    Article  MATH  MathSciNet  Google Scholar 

  8. Chatterjee, S., A simple invariance principle. Preprint, 2005. arXiv:math/0508213 [math.PR].

  9. Costello, K.P., Tao, T. & Vu, V., Random symmetric matrices are almost surely nonsingular. Duke Math. J., 135 (2006), 395–413.

    Article  MATH  MathSciNet  Google Scholar 

  10. Costello, K. P. & Vu, V., Concentration of random determinants and permanent estimators. SIAM J. Discrete Math., 23 (2009), 1356–1371.

    Article  MATH  MathSciNet  Google Scholar 

  11. Costin, O. & Lebowitz, J., Gaussian fluctuations in random matrices. Phys. Rev. Lett., 75 (1995), 69–72.

    Article  Google Scholar 

  12. Curto, R.E. & Fialkow, L. A., Recursiveness, positivity, and truncated moment problems. Houston J. Math., 17 (1991), 603–635.

    MATH  MathSciNet  Google Scholar 

  13. Deift, P., Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes in Mathematics, 3. New York University–Courant Institute of Mathematical Sciences, New York, 1999.

  14. — Universality for mathematical and physical systems, in International Congress of Mathematicians. Vol. I, pp. 125–152. Eur. Math. Soc., Zurich, 2007.

  15. Deift, P., Kriecherbauer, T., McLaughlin, K.T. R., Venakides, S. & Zhou, X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math., 52 (1999), 1335–1425.

    Article  MATH  MathSciNet  Google Scholar 

  16. Dyson, F. J., Correlations between eigenvalues of a random matrix. Comm. Math. Phys., 19 (1970), 235–250.

    Article  MATH  MathSciNet  Google Scholar 

  17. Erdős, L., Péché, S., Ramírez, J. A., Schlein, B. & Yau, H.-T., Bulk universality for Wigner matrices. Comm. Pure Appl. Math., 63 (2010), 895–925.

    MathSciNet  Google Scholar 

  18. Erdős, L., Ramírez, J. A., Schlein, B., Tao, T., Vu, V. & Yau, H.-T., Bulk universality for Wigner Hermitian matrices with subexponential decay. Math. Res. Lett., 17 (2010), 667–674.

    MathSciNet  Google Scholar 

  19. Erdős, L., Ramírez, J. A., Schlein, B. & Yau, H.-T., Universality of sine-kernel for Wigner matrices with a small Gaussian perturbation. Electron. J. Probab., 15 (2010), 526–603.

    MathSciNet  Google Scholar 

  20. Erdős, L., Schlein, B. & Yau, H.-T., Local semicircle law and complete delocalization for Wigner random matrices. Comm. Math. Phys., 287 (2009), 641–655.

    Article  MathSciNet  Google Scholar 

  21. — Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices. Ann. Probab., 37 (2009), 815–852.

    Article  MathSciNet  Google Scholar 

  22. — Wegner estimate and level repulsion for Wigner random matrices. Int. Math. Res. Not. IMRN, 2010 (2010), 436–479.

    Google Scholar 

  23. Ginibre, J., Statistical ensembles of complex, quaternion, and real matrices. J. Mathematical Phys., 6 (1965), 440–449.

    Article  MATH  MathSciNet  Google Scholar 

  24. Götze, F. & Kösters, H., On the second-order correlation function of the characteristic polynomial of a Hermitian Wigner matrix. Comm. Math. Phys., 285 (2009), 1183–1205.

    Article  MATH  MathSciNet  Google Scholar 

  25. Guionnet, A. & Zeitouni, O., Concentration of the spectral measure for large matrices. Electron. Comm. Probab., 5 (2000), 119–136.

    MATH  MathSciNet  Google Scholar 

  26. Gustavsson, J., Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. H. Poincaré Probab. Statist., 41 (2005), 151–178.

    Article  MATH  MathSciNet  Google Scholar 

  27. Jimbo, M., Miwa, T., Môri, Y. & Sato, M., Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D, 1 (1980), 80–158.

    Article  MATH  MathSciNet  Google Scholar 

  28. Johansson, K., Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Comm. Math. Phys., 215 (2001), 683–705.

    Article  MATH  MathSciNet  Google Scholar 

  29. Katz, N.M. & Sarnak, P., Random Matrices, Frobenius Eigenvalues, and Monodromy. American Mathematical Society Colloquium Publications, 45. Amer. Math. Soc., Providence, RI, 1999.

    MATH  Google Scholar 

  30. Landau, H. J. (ed.), Moments in Mathematics. Proceedings of Symposia in Applied Mathematics, 37. Amer. Math. Soc., Providence, RI, 1987.

    MATH  Google Scholar 

  31. Ledoux, M., The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, 89. Amer. Math. Soc., Providence, RI, 2001.

    MATH  Google Scholar 

  32. Levin, E. & Lubinsky, D. S., Universality limits in the bulk for varying measures. Adv. Math., 219 (2008), 743–779.

    Article  MATH  MathSciNet  Google Scholar 

  33. Lindeberg, J.W., Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung. Math. Z., 15 (1922), 211–225.

    Article  MathSciNet  Google Scholar 

  34. Mehta, M. L., Random Matrices and the Statistical Theory of Energy Levels. Academic Press, New York, 1967.

    MATH  Google Scholar 

  35. Mehta, M. L. & Gaudin, M., On the density of eigenvalues of a random matrix. Nuclear Phys., 18 (1960), 420–427.

    Article  MathSciNet  Google Scholar 

  36. Pastur, L., On the spectrum of random matrices. Teoret. Mat. Fiz., 10 (1972), 102–112 (Russian). English translation in Theoret. and Math. Phys., 10 (1972), 67–74.

  37. Pastur, L. & Shcherbina, M., Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles. J. Stat. Phys., 86 (1997), 109–147.

    Article  MATH  MathSciNet  Google Scholar 

  38. Paulauskas, V. & Račkauskas, A., Approximation Theory in the Central Limit Theorem. Mathematics and its Applications, 32. Kluwer, Dordrecht, 1989.

    Google Scholar 

  39. Péché, S. & Soshnikov, A., Wigner random matrices with non-symmetrically distributed entries. J. Stat. Phys., 129 (2007), 857–884.

    Article  MATH  MathSciNet  Google Scholar 

  40. — On the lower bound of the spectral norm of symmetric random matrices with independent entries. Electron. Commun. Probab., 13 (2008), 280–290.

    MATH  MathSciNet  Google Scholar 

  41. Soshnikov, A., Universality at the edge of the spectrum in Wigner random matrices. Comm. Math. Phys., 207 (1999), 697–733.

    Article  MATH  MathSciNet  Google Scholar 

  42. — Gaussian limit for determinantal random point fields. Ann. Probab., 30 (2002), 171–187.

    Article  MATH  MathSciNet  Google Scholar 

  43. Talagrand, M., A new look at independence. Ann. Probab., 24 (1996), 1–34.

    Article  MATH  MathSciNet  Google Scholar 

  44. Tao, T. & Vu, V., On random ±1 matrices: singularity and determinant. Random Structures Algorithms, 28 (2006), 1–23.

    Article  MATH  MathSciNet  Google Scholar 

  45. — Random matrices: the distribution of the smallest singular values. Geom. Funct. Anal., 20 (2010), 260–297.

    Article  MATH  MathSciNet  Google Scholar 

  46. — Random matrices: universality of local eigenvalue statistics up to the edge. Comm. Math. Phys., 298 (2010), 549–572.

    Article  MATH  MathSciNet  Google Scholar 

  47. Wigner, E. P., On the distribution of the roots of certain symmetric matrices. Ann. of Math., 67 (1958), 325–327.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence Tao.

Additional information

T. Tao is supported by a grant from the MacArthur Foundation, by NSF grant DMS-0649473, and by the NSF Waterman award.

V. Vu is supported by research grants DMS-0901216 and AFOSAR-FA-9550-09-1-0167.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, T., Vu, V. Random matrices: Universality of local eigenvalue statistics. Acta Math 206, 127–204 (2011). https://doi.org/10.1007/s11511-011-0061-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-011-0061-3

2000 Math. Subject Classification

Navigation