Skip to main content
Log in

Equilibrium and Non-equilibrium Properties of Superfluids and Superconductors

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We review some rigorous results on the equilibrium and non-equilibrium properties of superfluids and superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, P.W.: Random phase approximation in the theory of superconductivity. Phys. Rev. 112, 1900 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  2. Baym, G.: The microscopic description of superfluidity. In: Clark, R.C., Derrick, G.H. (eds.) Mathematical Methods in Solid State and Superfluid Theory. Oliver and Boyd Edinburgh (1969)

  3. Blanchard, P., Brüning, E.: Mathematical Methods in Physics—Distributions. Hilbert-Space Operators and Variational Methods. Birkhäuser, Basel (2003)

    MATH  Google Scholar 

  4. Bogoliubov, N.N., Bogoliubov Jr., N.N.: Introduction to Quantum Statistical Mechanics, 2nd edn. World Scientific Publishing Company, Singapore (2010)

    MATH  Google Scholar 

  5. Bratelli, O., Kishimoto, A., Robinson, D.W.: Stability properties and the KMS condition. Commun. Math. Phys. 61, 209 (1978)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Bogoliubov, N.N.: On the theory of superfluidity. J. Phys. 11, 23 (1947)

    MathSciNet  Google Scholar 

  7. Bogoliubov, N.N.: Lectures on Quantum Statistics, Volume 2: Quasi-Averages. Gordon and Breach Science Publishers, New York (1970)

  8. Bratelli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics I. Springer, Berlin (1987)

    Book  Google Scholar 

  9. Bratelli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics II, 2nd edn. Springer, Berlin (1997)

    Book  Google Scholar 

  10. Bogoliubov, N.N., Tolmachev, V.V., Shirkov, D.V.: A New Method in the Theory of Superconductivity. Consultants Bureau, New York (1959)

    Google Scholar 

  11. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Cornean, H.D., Derezinski, J., Zin, P.: On the infimum of the energy-momentum spectrum of a homogeneous Bose gas. J. Math. Phys. 50, 062103 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Dorlas, T.C.: Orthogonality and completeness of the Bethe Ansatz eigenstates of the nonlinear Schrödinger model. Commun. Math. Phys. 154, 347–376 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Dubin, D.A., Sewell, G.L.: Time translations in the algebraic formulation of statistical mechanics. J. Math. Phys. 11, 2990 (1970)

    Article  ADS  MATH  Google Scholar 

  15. Feynman, R.P.: Statistical Mechanics—A Set of Lectures. W. A. Benjamin Inc., Reading (1972)

  16. Girardeau, M.D.: Relationship between systems of impenetrable Bosons and Fermions in one dimension. J. Math. Phys. 1, 516 (1960)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Galasiewicz, Z.M., Pelatski, A.: Ordering Phenomena in Condensed Matter Physics. World Scientific, Singapore (1990)

    Book  Google Scholar 

  18. Haag, R.: The mathematical structure of the Bardeen–Cooper–Schrieffer model. Nuovo Cim. 25, 287 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Haag, R., Kastler, D., Trych-Pohlmeyer, E.B.: Stability and equilibrium states. Commun. Math. Phys. 38, 173 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  20. Hainzl, C., Seiringer, R.: The BCS functional of superconductivity and its mathematical properties. J. Math. Phys. 57, 021101 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Hugenholtz, N.M.: States and representations in statistical mechanics. In: Streater, R.F. (ed.) Mathematics of Contemporary Physics. Academic Press, London (1972)

    Google Scholar 

  22. Kadanoff, L.P.: Slippery wave functions. J. Stat. Phys. 152, 805–823 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Kuckert, Bernd: Covariant thermodynamics of quantum systems: passivity, semipassivity and the Unruh effect. Ann. Phys. 295, 216 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Lenard, A.: Momentum distribution in the ground state of the one-dimensional system of impenetrable Bosons. J. Math. Phys. 5, 930 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  25. Lieb, E.H.: Exact analysis of an interacting Bose gas II—the excitation spectrum. Phys. Rev. 130, 1616–1624 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. London, F., London, H.: The electromagnetic equations of the supraconductor. Physica 2, 341 (1935)

    Article  ADS  MATH  Google Scholar 

  27. Lieb, E.H., Liniger, W.: Exact analysis of an interacting Bose gas I—the general solution and the ground state. Phys. Rev. 130, 1605–1616 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Martin, PhA, Rothen, F.: Many body problems and quantum field theory—an introduction. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  29. Marchetti, Domingos H.U., Wreszinski, Walter F.: Asymptotic Time Decay in Quantum Physics. World Scientific, Singapore (2013)

  30. Schafroth, M.R.: Superconductivity of a charged ideal Bose gas. Phys. Rev. 100, 463 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  31. Schafroth, M.R.: Theoretical aspects of superconductivity. In: Seitz, F., Turnbull, D. (eds.) Solid State Physics, pp. 293–498. Academic Press, New York (1960)

    Google Scholar 

  32. Sewell, G.L.: Model of antiferromagnetic superconductivity. Quantum Studies: Mathematics and Foundations. arXiv:1509.08407

  33. Sewell, G.L.: Quantum Theory of Collective Phenomena. Oxford University Press, Oxford (1986)

    Google Scholar 

  34. Sewell, G.L.: Off diagonal long range order and the Meissner effect. J. Stat. Phys. 61, 415–422 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  35. Sewell, G.L.: Quantum Mechanics and Its Emergent Macrophysics. Princeton University Press, Princeton (2002)

    MATH  Google Scholar 

  36. Sütö, A.: Galilean invariance in confined quantum systems—implications for spectral gaps, superfluid flow and periodic order. Phys. Rev. Lett. 112, 095301 (2014)

    Article  ADS  Google Scholar 

  37. Sirugue, M., Winnink, M.: Constraints imposed upon a state of system that satisfies the KMS conditions. Commun. Math. Phys. 19, 161–168 (1970)

    Article  ADS  MATH  Google Scholar 

  38. Sewell, G.L., Wreszinski, W.F.: On the mathematical theory of superfluidity. J. Phys. A Math. Theor. 42, 015207 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Seiringer, R., Yin, J.: The Lieb–Liniger model as a limit of dilute Bosons in three dimensions. Commun. Math. Phys. 284, 459 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Steinhauer, J., Katz, N., Ozeri, R., Davidson, N., Tozzo, C., Dalfovo, F.: Bragg spectroscopy of the multibranch Bogoliubov spectrum of elongated Bose–Einstein condensates. Phys. Rev. Lett. 90, 060404 (2003)

    Article  ADS  Google Scholar 

  41. Thirring, W.: On the mathematical structure of the BCS-model. II. Commun. Math. Phys. 7, 181 (1968)

    Article  ADS  Google Scholar 

  42. Thirring, W., Wehrl, A.: On the mathematical structure of the BCS-model. Commun. Math. Phys. 4, 303 (1967)

    Article  ADS  MATH  Google Scholar 

  43. Verbeure, A.: Many Body Boson Systems—Half a Century Later. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  44. Van Leeuwen, J.H.: Problems of the electronic theory of magnetism. J. Phys. Paris 2, 361–377 (1921)

    Google Scholar 

  45. van Hemmen, J.L.: Linear fermion systems, molecular field models and the KMS condition. Fortschr. der Physik 26, 397 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  46. Wreszinski, W.F., da Silva Jr, M.A.: Onsager’s inequality, the Landau–Feynman Ansatz and superfluidity. J. Phys. A Math. Gen. 38, 6293–6310 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  47. Wreszinski, W.F.: Landau superfluids as non-equilibrium stationary states. J. Math. Phys. 56, 011901 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. Wreszinski, W.F.: The Meissner effect in the ground state of the free charged Bosons in a constant magnetic field. Quantum Stud. Math. Found. 2, 201–220 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  49. Wreszinski, W.F., Zagrebnov, V.A.: Bogoliubov quasi-averages: spontaneous symmetry breaking and algebra of fluctuations. Theor. Math. Phys. (2017). arXiv:1704.00190v1

  50. Zagrebnov, V.A., Bru, J.B.: The Bogoliubov model of weakly imperfect Bose gas. Phys. Rep. 350, 291 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Ziman, J.M.: Principles of the Theory of Solids. Cambridge University Press, Cambridge (1965)

    MATH  Google Scholar 

Download references

Acknowledgements

The present review was written for the meeting on Operator Algebras and Quantum Physics, July 17th–23rd 2015, Satellite conference at USP, S\({\tilde{a}}\)o Paulo, Brazil, to the XVIII International Conference on Mathematical Physics, Santiago de Chile (2015). We should like to thank the organizers for the invitation, A. Sütö for helpful correspondence, B. Nachtergaele, G. L. Sewell and V. A. Zagrebnov for helpful remarks, and both referees, specially referee 2, for very enlightening comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter F. Wreszinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wreszinski, W.F. Equilibrium and Non-equilibrium Properties of Superfluids and Superconductors. J Stat Phys 169, 782–803 (2017). https://doi.org/10.1007/s10955-017-1888-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1888-6

Keywords

Navigation