Skip to main content
Log in

1 / n Expansion for the Number of Matchings on Regular Graphs and Monomer-Dimer Entropy

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Using a 1 / n expansion, that is an expansion in descending powers of n, for the number of matchings in regular graphs with 2n vertices, we study the monomer-dimer entropy for two classes of graphs. We study the difference between the extensive monomer-dimer entropy of a random r-regular graph G (bipartite or not) with 2n vertices and the average extensive entropy of r-regular graphs with 2n vertices, in the limit \(n \rightarrow \infty \). We find a series expansion for it in the numbers of cycles; with probability 1 it converges for dimer density \(p < 1\) and, for G bipartite, it diverges as \(|\mathrm{ln}(1-p)|\) for \(p \rightarrow 1\). In the case of regular lattices, we similarly expand the difference between the specific monomer-dimer entropy on a lattice and the one on the Bethe lattice; we write down its Taylor expansion in powers of p through the order 10, expressed in terms of the number of totally reducible walks which are not tree-like. We prove through order 6 that its expansion coefficients in powers of p are non-negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bollobas, B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur. J. Combin. 1, 311–316 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bollobas, B., McKay, B.D.: The number of matching in random regular graphs and bipartite graphs. J. Combin. Theory 41, 80–91 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  3. Butera, P., Federbush, P., Pernici, M.: Higher-order expansions for the entropy of a dimer or a monomer-dimer system on \(d\)-dimensional lattices. Phys. Rev. E 87, 062113 (2013)

    Article  ADS  Google Scholar 

  4. Butera, P., Pernici, M.: High-temperature expansions of the higher susceptibilities for the Ising model in general dimension \(d\). Phys. Rev. E 86, 01113 (2012)

    Google Scholar 

  5. Butera, P., Pernici, M.: Yang-Lee edge singularities from extended activity expansions of the dimer density for bipartite lattices of dimensionality \(2 \le d \le 7\). Phys. Rev. E86, 011104

  6. Federbush, P.: A Mysterious Cluster Expansion Associated to the Expectation Value of the Permanent of 0-1 Matrices. arXiv:1607.00885 [math-ph]

  7. Federbush, P., Friedland, S.: An asymptotic expansion and recursive inequalities for the monomer-dimer problem. J. Stat. Phys. 143, 306–325 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Fisher, M.E.: Statistical mechanics of dimers on a plane lattice. Phys. Rev. 124, 1664–1672 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Friedland, S., Krop, E., Markström, K.: On the number of matchings in regular graphs. Electron. J. Combin. 15, R110 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Gaunt, D.S.: Exact series-expansion study of the monomer-dimer problem. Phys. Rev. 179, 174–179 (1969)

    Article  ADS  Google Scholar 

  11. Godsil, C.G., McKay, B.D.: Asymptotic enumeration of Latin rectangles. J. Combin. Theory B48, 19–44 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Heilmann, O.J., Lieb, E.H.: Theory of monomer-dimer systems. Commun. Math. Phys. 25, 190–232 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Kasteleyn, P.W.: The statistics of dimers on a lattice. Physica 27, 1209–1225 (1961)

    Article  ADS  MATH  Google Scholar 

  14. Kurtze, D.A., Fisher, M.E.: Yang-Lee edge singularities at high temperatures. Phys. Rev. B 20, 2785–2796 (1979)

    Article  ADS  Google Scholar 

  15. McKay, B.D.: The expected eigenvalue distribution of a large regular graph. Linear Algebra Appl. 40, 203–216 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nagle, J.F.: New series-expansion method for the dimer problem. Phys. Rev. 152, 190–197 (1966)

    Article  ADS  Google Scholar 

  17. SageMath: the Sage Mathematics Software System (Version 7.3). The Sage Developers (2016). http://www.sagemath.org

  18. Wanless, I.M.: Counting matchings and tree-like walks in regular graphs. Combin. Probab. Comput. 19, 463–480 (2010)

  19. Wormald, N.C.: Models of random regular graphs. In: Lamb, J.D., Preece, D.A. eds.: Surveys in Combinatorics 1999, LMS Lecture Note Series, vol. 267, pp. 239–298. Cambridge University Press, Cambridge (1999)

  20. Zdeborova, L., Mezard, M.: The number of matchings in random graphs. J. Stat. Mech. 2006.05, P05003 (2006)

Download references

Acknowledgements

I thank Paolo Butera for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Pernici.

Appendices

Appendix A: \(a_h\) Coefficients of \(M_j\)

Since \(a_k\) has degree at most 2k in j, from Eq. (18) it follows that \(q_k\) has degree at most \(k-1\). Let

$$\begin{aligned} q_k = \sum _{h=0}^{k-1} q_{kh} j^h \end{aligned}$$
(42)

Examining the expressions computed recursively for \(a_k\) for generic r through \(k=20\), we find that the four highest coefficients of \(q_k\) have the form

$$\begin{aligned} \begin{array}{ll} q_{k,k-1} =&{} \frac{\alpha ^k}{k!}, \qquad k \ge 1 \\ q_{k,k-2} =&{} q_{2,0} \frac{\alpha ^{k-2}}{(k-2)!}, \qquad k \ge 2 \\ q_{k,k-3} =&{} \bigg (-\frac{\alpha }{6}(1-\frac{1}{k-3}) (\frac{2}{r}-1)(\frac{1}{r}-1)^2 + q_{4,1} \bigg )\frac{\alpha ^{k-4}}{(k-4)!}, \qquad k \ge 4 \\ q_{k,k-4} =&{} \bigg ((k-6)\frac{\alpha }{6}q_{2,0}(\frac{2}{r}-1)(\frac{1}{r}-1)^2 + 2q_{6,2} + \frac{1}{6}(k^2-9k+18)q_{2,0}^3\bigg ) \\ &{} \frac{\alpha ^{k-6}}{(k-4)(k-5)(k-6)!}, \qquad k \ge 6 \end{array} \end{aligned}$$
(43)

where \(\alpha \equiv \frac{1}{2r} - 1\) and

$$\begin{aligned} \begin{array}{ll} q_{2,0} =&{} \frac{7}{24 r^2} - \frac{1}{2r} + \frac{1}{6} \\ q_{4,1} =&{} \frac{241}{1152 r^4} - \frac{43}{48 r^3} + \frac{193}{144 r^2} - \frac{5}{6 r} + \frac{13}{72} \\ q_{6,2} =&{} \frac{48677}{414720 r^6} - \frac{9163}{11520 r^5} + \frac{74579}{34560 r^4} - \frac{863}{288 r^3} + \frac{19397}{8640 r^2} - \frac{619}{720 r} + \frac{851}{6480} \end{array} \end{aligned}$$
(44)

Equation (43) has been tested till \(k=100\) for \(r=1,\ldots , 10\) using \(a_k\) computed with Eq. (19).

Here we write down the first five \(q_k\).

$$\begin{aligned} \begin{array}{ll} q_1 &{}= -1 + \frac{1}{2 \, r} \\ q_2 &{}= \frac{1}{2} \, j + \frac{1}{6} -\frac{j + 1}{2 \, r} + \frac{3 \, j + 7}{24 \, r^{2}} \\ q_3 &{}= -\frac{1}{6} \, j^{2} - \frac{1}{6} \, j - \frac{1}{6} + \frac{3 \, j^{2} + 7 \, j + 8}{12 \, r} - \frac{3 \, j^{2} + 13 \, j + 20}{24 \, r^{2}} + \frac{j^{2} + 7 \, j + 16}{48 \, r^{3}} \\ q_4 &{}= \frac{1}{24} \, j^{3} + \frac{1}{12} \, j^{2} + \frac{13}{72} \, j + \frac{37}{180} -\frac{j^{3} + 4 \, j^{2} + 10 \, j + 13}{12 \, r} + \frac{9 \, j^{3} + 60 \, j^{2} + 193 \, j + 298}{144 \, r^{2}} \\ &{}\quad -\frac{j^{3} + 10 \, j^{2} + 43 \, j + 82}{48 \, r^{3}} + \frac{15 \, j^{3} + 210 \, j^{2} + 1205 \, j + 2978}{5760 \, r^{4}} \\ q_5 &{}= -\frac{1}{120} \, j^{4} - \frac{1}{36} \, j^{3} - \frac{7}{72} \, j^{2} - \frac{7}{30} \, j - \frac{3}{10} \\ &{}\quad + \frac{15 \, j^{4} + 90 \, j^{3} + 365 \, j^{2} + 994 \, j + 1416}{720 \, r} - \frac{3 \, j^{4} + 28 \, j^{3} + 142 \, j^{2} + 451 \, j + 726}{144 \, r^{2}} \\ &{}\quad +\frac{3 \, j^{4} + 40 \, j^{3} + 259 \, j^{2} + 982 \, j + 1824}{288 \, r^{3}} - \frac{15 \, j^{4} + 270 \, j^{3} + 2225 \, j^{2} + 10258 \, j + 22512}{5760 \, r^{4}} \\ &{}\quad +\frac{3 \, j^{4} + 70 \, j^{3} + 725 \, j^{2} + 4098 \, j + 10944}{11520 \, r^{5}} \end{array} \end{aligned}$$
(45)

Appendix B: Coefficients \(d_h\) for the Entropy for Regular Lattice

Let \(z \equiv \frac{1}{r}\). For notational simplicity, here \(\epsilon _s\) is the constant \(\hat{\epsilon }_s\) in the text.

The coefficient \(d_h\) in Eq. (40) are given, through order 10, by

$$\begin{aligned} d_3= & {} -\frac{1}{12} \, \epsilon _{3} z^{3} \nonumber \\ d_4= & {} \frac{1}{16} \, {\left( 4 \, \epsilon _{3} + \epsilon _{4}\right) } z^{4} - \frac{1}{2} \, \epsilon _{3} z^{3} \nonumber \\ d_5= & {} -\frac{1}{16} \, \epsilon _{3}^{2} z^{6} - \frac{1}{20} \, {\left( 5 \, \epsilon _{3} + 5 \, \epsilon _{4} + \epsilon _{5}\right) } z^{5} + \frac{1}{2} \, {\left( 3 \, \epsilon _{3} + \epsilon _{4}\right) } z^{4} - \frac{7}{4} \, \epsilon _{3} z^{3} \nonumber \\ d_6= & {} \frac{1}{16} \, {\left( 7 \, \epsilon _{3}^{2} + 2 \, \epsilon _{3} \epsilon _{4}\right) } z^{7} - \frac{1}{24} \, {\left( 21 \, \epsilon _{3}^{2} - 2 \, \epsilon _{3} - 9 \, \epsilon _{4} - 6 \, \epsilon _{5} - \epsilon _{6}\right) } z^{6} - \frac{1}{2} \, {\left( 3 \, \epsilon _{3} +4 \, \epsilon _{4} + \epsilon _{5}\right) } z^{5}\nonumber \\&+\, \frac{3}{4} \, {\left( 7 \, \epsilon _{3} + 3 \, \epsilon _{4}\right) } z^{4} - \frac{14}{3} \, \epsilon _{3} z^{3}\nonumber \\ d_7= & {} -\frac{1}{12} \, \epsilon _{3}^{3} z^{9} - \frac{1}{16} \, {\left( 20 \, \epsilon _{3}^{2} + 16 \, \epsilon _{3} \epsilon _{4} + \epsilon _{4}^{2} + 2 \, \epsilon _{3} \epsilon _{5}\right) } z^{8} \nonumber \\&+\, \frac{1}{28} \, {\left( 168 \, \epsilon _{3}^{2} + 56 \, \epsilon _{3} \epsilon _{4} - 7 \, \epsilon _{4} - 14 \, \epsilon _{5} - 7 \, \epsilon _{6} - \epsilon _{7}\right) } z^{7} \nonumber \\&-\, \frac{1}{2} \, {\left( 13 \, \epsilon _{3}^{2} - \epsilon _{3} - 6 \, \epsilon _{4} - 5 \, \epsilon _{5} - \epsilon _{6}\right) } z^{6} - \frac{1}{4} \, {\left( 21 \, \epsilon _{3} + 36 \, \epsilon _{4} + 11 \, \epsilon _{5}\right) } z^{5} + \frac{1}{2} \, {\left( 28 \, \epsilon _{3} + 15 \, \epsilon _{4}\right) } z^{4} - \frac{21}{2} \, \epsilon _{3} z^{3} \nonumber \\ d_8= & {} \frac{3}{32} \, {\left( 10 \, \epsilon _{3}^{3} + 3 \, \epsilon _{3}^{2} \epsilon _{4}\right) } z^{10} - \frac{1}{16} \, {\left( 30 \, \epsilon _{3}^{3} - 30 \, \epsilon _{3}^{2} - 54 \, \epsilon _{3} \epsilon _{4} - 9 \, \epsilon _{4}^{2} - 18 \, \epsilon _{3} \epsilon _{5} - 2 \, \epsilon _{4} \epsilon _{5} - 2 \, \epsilon _{3} \epsilon _{6}\right) } z^{9} \nonumber \\&-\, \frac{1}{32} \, {\left( 540 \, \epsilon _{3}^{2} + 504 \, \epsilon _{3} \epsilon _{4} + 36 \, \epsilon _{4}^{2} + 72 \, \epsilon _{3} \epsilon _{5} - 2 \, \epsilon _{4} - 16 \, \epsilon _{5} - 20 \, \epsilon _{6} - 8 \, \epsilon _{7} - \epsilon _{8}\right) } z^{8} \nonumber \\&+\, \frac{1}{8} \, {\left( 351 \, \epsilon _{3}^{2} + 135 \, \epsilon _{3} \epsilon _{4} - 16 \, \epsilon _{4} - 40 \, \epsilon _{5} - 24 \, \epsilon _{6} - 4 \, \epsilon _{7}\right) } z^{7}\nonumber \\&- \frac{1}{8} \, {\left( 273 \, \epsilon _{3}^{2} - 14 \, \epsilon _{3} - 108 \, \epsilon _{4} - 110 \, \epsilon _{5} - 26 \, \epsilon _{6}\right) } z^{6} \nonumber \\&-\, {\left( 14 \, \epsilon _{3} + 30 \, \epsilon _{4} + 11 \, \epsilon _{5}\right) } z^{5} + \frac{3}{8} \, {\left( 84 \, \epsilon _{3} + 55 \, \epsilon _{4}\right) } z^{4} - 21 \, \epsilon _{3} z^{3} \nonumber \\ d_9= & {} -\frac{55}{384} \, \epsilon _{3}^{4} z^{12} - \frac{5}{48} \, {\left( 44 \, \epsilon _{3}^{3} + 33 \, \epsilon _{3}^{2} \epsilon _{4} + 3 \, \epsilon _{3} \epsilon _{4}^{2} + 3 \, \epsilon _{3}^{2} \epsilon _{5}\right) } z^{11} \nonumber \\&+\, \frac{1}{16} \, \Bigg (330 \, \epsilon _{3}^{3} + 110 \, \epsilon _{3}^{2} \epsilon _{4} - 25 \, \epsilon _{3}^{2} - 100 \, \epsilon _{3} \epsilon _{4} - 35 \, \epsilon _{4}^{2} - 70 \, \epsilon _{3} \epsilon _{5} - 20 \, \epsilon _{4} \epsilon _{5} \nonumber \\&-\, \epsilon _{5}^{2} - 20 \, \epsilon _{3} \epsilon _{6} - 2 \, \epsilon _{4} \epsilon _{6} - 2 \, \epsilon _{3} \epsilon _{7}\Bigg ) z^{10} \nonumber \\&-\, \frac{1}{144} \, \Bigg (3135 \, \epsilon _{3}^{3} - 3600 \, \epsilon _{3}^{2} - 7560 \, \epsilon _{3} \epsilon _{4} - 1440 \, \epsilon _{4}^{2} - 2880 \, \epsilon _{3} \epsilon _{5} - 360 \, \epsilon _{4} \epsilon _{5} - 360 \, \epsilon _{3} \epsilon _{6}\nonumber \\&+ 36 \, \epsilon _{5} + 120 \, \epsilon _{6} + 108 \, \epsilon _{7} +36 \, \epsilon _{8} + 4 \, \epsilon _{9}\Bigg ) z^{9} \nonumber \\&-\, \frac{1}{8} \, {\left( 975 \, \epsilon _{3}^{2} + 1050 \, \epsilon _{3} \epsilon _{4} + 85 \, \epsilon _{4}^{2} + 170 \, \epsilon _{3} \epsilon _{5} - 4 \, \epsilon _{4} - 40 \, \epsilon _{5} - 60 \, \epsilon _{6} - 28 \, \epsilon _{7} - 4 \, \epsilon _{8}\right) } z^{8} \nonumber \\&+\, \frac{1}{4} \, {\left( 910 \, \epsilon _{3}^{2} + 400 \, \epsilon _{3} \epsilon _{4} - 36 \, \epsilon _{4} - 110 \, \epsilon _{5} - 78 \, \epsilon _{6} - 15 \, \epsilon _{7}\right) } z^{7} \nonumber \\&-\, \frac{1}{48} \, {\left( 6825 \, \epsilon _{3}^{2} - 224 \, \epsilon _{3} - 2160 \, \epsilon _{4} - 2640 \, \epsilon _{5} - 728 \, \epsilon _{6}\right) } z^{6} \nonumber \\&-\, \frac{1}{4} \, {\left( 126 \, \epsilon _{3} + 330 \, \epsilon _{4} + 143 \, \epsilon _{5}\right) } z^{5} + \frac{9}{2} \, {\left( 14 \, \epsilon _{3} + 11 \, \epsilon _{4}\right) } z^{4} - \frac{77}{2} \, \epsilon _{3} z^{3} \end{aligned}$$
(46)
$$\begin{aligned} d_{10}= & {} \frac{11}{64} \, {\left( 13 \, \epsilon _{3}^{4} + 4 \, \epsilon _{3}^{3} \epsilon _{4}\right) } z^{13} - \frac{11}{96} \, \Big (39 \, \epsilon _{3}^{4} - 112 \, \epsilon _{3}^{3} - 162 \, \epsilon _{3}^{2} \epsilon _{4} - 36 \, \epsilon _{3} \epsilon _{4}^{2} - \epsilon _{4}^{3}\nonumber \\&- 36 \, \epsilon _{3}^{2} \epsilon _{5} - 6 \, \epsilon _{3} \epsilon _{4} \epsilon _{5} - 3 \, \epsilon _{3}^{2} \epsilon _{6}\Big ) z^{12} \nonumber \\&-\, \frac{1}{16} \, (1584 \, \epsilon _{3}^{3} + 1320 \, \epsilon _{3}^{2} \epsilon _{4} + 132 \, \epsilon _{3} \epsilon _{4}^{2} + 132 \, \epsilon _{3}^{2} \epsilon _{5} - 11 \, \epsilon _{3}^{2} - 110 \, \epsilon _{3} \epsilon _{4} - 77 \, \epsilon _{4}^{2} \nonumber \\&-\, 154 \, \epsilon _{3} \epsilon _{5} - 88 \, \epsilon _{4} \epsilon _{5} - 11 \, \epsilon _{5}^{2}-88 \, \epsilon _{3} \epsilon _{6} - 22 \, \epsilon _{4} \epsilon _{6} - 2 \, \epsilon _{5} \epsilon _{6} - 22 \, \epsilon _{3} \epsilon _{7} - 2 \, \epsilon _{4} \epsilon _{7} - 2 \, \epsilon _{3} \epsilon _{8}) z^{11} \nonumber \\&+\, \frac{1}{40} \, (9405 \, \epsilon _{3}^{3} + 3465 \, \epsilon _{3}^{2} \epsilon _{4} - 825 \, \epsilon _{3}^{2} - 3850 \, \epsilon _{3} \epsilon _{4} - 1540 \, \epsilon _{4}^{2} - 3080 \, \epsilon _{3} \epsilon _{5} - 990 \, \epsilon _{4} \epsilon _{5} \nonumber \\&-\, 55 \, \epsilon _{5}^{2} - 990 \, \epsilon _{3} \epsilon _{6}-110 \, \epsilon _{4} \epsilon _{6} - 110 \, \epsilon _{3} \epsilon _{7} + \epsilon _{10} + 2 \, \epsilon _{5} + 25 \, \epsilon _{6} + 50 \, \epsilon _{7} + 35 \, \epsilon _{8} + 10 \, \epsilon _{9}) z^{10} \nonumber \\&-\, \frac{1}{24} \, (4180 \, \epsilon _{3}^{3} - 4290 \, \epsilon _{3}^{2} - 10395 \, \epsilon _{3} \epsilon _{4} - 2244 \, \epsilon _{4}^{2} - 4488 \, \epsilon _{3} \epsilon _{5} - 627 \, \epsilon _{4} \epsilon _{5} - 627 \, \epsilon _{3} \epsilon _{6} \nonumber \\&+\, 60 \, \epsilon _{5} + 240 \, \epsilon _{6}+ 252 \, \epsilon _{7} + 96 \, \epsilon _{8} + 12 \, \epsilon _{9}) z^{9} \nonumber \\&-\, \frac{1}{8} \, {\left( 5005 \, \epsilon _{3}^{2} + 6160 \, \epsilon _{3} \epsilon _{4} + 561 \, \epsilon _{4}^{2} + 1122 \, \epsilon _{3} \epsilon _{5} - 18 \, \epsilon _{4} - 220 \, \epsilon _{5} - 390 \, \epsilon _{6} - 210 \, \epsilon _{7} - 34 \, \epsilon _{8}\right) } z^{8} \nonumber \\&+\, \frac{1}{16} \, {\left( 15015 \, \epsilon _{3}^{2} + 7480 \, \epsilon _{3} \epsilon _{4} - 480 \, \epsilon _{4} - 1760 \, \epsilon _{5} - 1456 \, \epsilon _{6} - 320 \, \epsilon _{7}\right) } z^{7} \nonumber \\&-\, \frac{1}{8} \, {\left( 4004 \, \epsilon _{3}^{2} - 84 \, \epsilon _{3} - 990 \, \epsilon _{4} - 1430 \, \epsilon _{5} - 455 \, \epsilon _{6}\right) } z^{6} - \frac{1}{10} \, {\left( 630 \, \epsilon _{3} + 1980 \, \epsilon _{4} + 1001 \, \epsilon _{5}\right) } z^{5} \nonumber \\&+\, \frac{33}{4} \, {\left( 14 \, \epsilon _{3} + 13 \, \epsilon _{4}\right) } z^{4} - 66 \, \epsilon _{3} z^{3} \end{aligned}$$
(47)

Appendix C: Proof of a Conjecture in [6] in Some Cases

The \(n\times n\) reduced adjacency matrix A of a bipartite r-regular graph G with 2n vertices has entries 0 and 1, and the sums of the rows and of the columns equals r.

The uniform distribution of the labelled graphs corresponds to the expectation E.

The number or i-matchings on G is \(m_i(G) = {{\mathrm{perm}}}_i(A)\), defined as the sum of the permanents of the \(i\times i\) minors of A.

\(A_i \equiv E({{\mathrm{perm}}}_i(A))\) is the average number of i-matchings.

Another expectation \(E_2\) is defined by the second measure in Section 4 of [9] for the non negative integer matrices, with

$$\begin{aligned} A_i^{E_2} \equiv E_2({{\mathrm{perm}}}_i(A)) = \left( {\begin{array}{c}n\\ i\end{array}}\right) ^2 \frac{r^{2i} i! (rn-i)!}{(rn)!} \end{aligned}$$
(48)

It is the average number of regular bipartite multigraphs under the expectation \(E_2\).

In [6] the following quantity is defined

$$\begin{aligned} \mathcal{C}_i= \bigg ( \frac{1}{r^i} \frac{n^i (n-i)!}{n!} \bigg ) \cdot \sum _{k=0}^ i (-1)^k \left( {\begin{array}{c}n-i+k\\ k\end{array}}\right) ^2 k! (\frac{r}{n})^k A_{i-k} \end{aligned}$$
(49)

with \(\mathcal{C}_0=1\) and \(\mathcal{C}_1 =0\).

From this the following cluster expansion is constructed

$$\begin{aligned} \sum _i T_i x^i = \mathrm{ln}(\sum _i \mathcal{C}_i x^i) \end{aligned}$$
(50)

Similarly using Eq. (49), the quantities \(C_i^{E_2}\) are computed in terms of \(A_i^{E_2}\); from this one gets \(T_i^{E_2}\) using Eq. (50).

In [6] it is conjectured that

$$\begin{aligned} Q_i(r) \equiv \lim _{n\rightarrow \infty } \frac{1}{n} T_i(n) = \lim _{n\rightarrow \infty } \frac{1}{n} T_i^{E_k}(n,r), \quad k=1,2 \end{aligned}$$
(51)

Using Eqs. (48, 49, 50) one can compute the first few \(Q_i\). In [6] the conjecture has been proven for \(i \le 3\); some numerical evidence has been given for \(4 \le i \le 25\).

We have proven this conjecture for \(i \le 7\).

For \(i \le 7\), \(m_i\) is linear in the \(\epsilon \)’s. Since \(\epsilon _s\) is linear in the contributors, \(E(\epsilon _s)\) is linear in the average of the contributors, so it can be computed modulo \(o(n^0)\) using \(E(C_s) = \frac{1}{s}(r-1)^s + o(n^0)\) and the fact that the polycyclic contributors are \(o(n^0)\) [19]. For \(i \le 7\), \(\epsilon _i\) is given in Eq. (6).

It is easy to see from Eqs. (49, 50) that \(T_i\) is linear in the average of contributors; expanding \(T_i\) in 1 / n expansion, keeping the average of the contributors as independent variables, it has the form

$$\begin{aligned} T_i = n Q_i + B_i \end{aligned}$$
(52)

where \(Q_i\) is the one found in [6], and \(B_i\) depends on r and is linear in the average of contributors, plus \(o(n^0)\) terms. For instance

$$\begin{aligned} B_4 = -\frac{r^{4} - 8 \, r^{3} + 37 \, r^{2} - 30 \, r - 4 \, E(C_{4})}{4 \, r^{4}} + o(n^0) \end{aligned}$$
(53)

It follows that \(\lim _{n \rightarrow \infty }B_i\) is a function of r for \(i \le 7\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pernici, M. 1 / n Expansion for the Number of Matchings on Regular Graphs and Monomer-Dimer Entropy. J Stat Phys 168, 666–679 (2017). https://doi.org/10.1007/s10955-017-1819-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1819-6

Keywords

Navigation