Skip to main content
Log in

Step Density Profiles in Localized Chains

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider two types of strongly disordered one-dimensional Hamiltonian systems coupled to baths (energy or particle reservoirs) at the boundaries: strongly disordered quantum spin chains and disordered classical harmonic oscillators. These systems are believed to exhibit localization, implying in particular that the conductivity decays exponentially in the chain length L. We ask however for the profile of the (very slowly) transported quantity in the steady state. We find that this profile is a step-function, jumping in the middle of the chain from the value set by the left bath to the value set by the right bath. This is confirmed by numerics on a disordered quantum spin chain of 9 spins and on much longer chains of harmonic oscillators. From theoretical arguments, we find that the width of the step grows not faster than \(\sqrt{L}\), and we confirm this numerically for harmonic oscillators. In this case, we also observe a drastic breakdown of local equilibrium at the step, resulting in a heavily oscillating temperature profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Typicality refers here to the random fields \(h_i\)

  2. To be precise, there is a slight glitch in the above argument: namely the Hamiltonian of the left l-spins, which is diagonal in the \(\tilde{S}^z_i\), does depend weakly on the other \(\ell \)-spins via the long-range terms in (3.5). This means that the equilibrium state for the j leftmost \(\ell \)-spins depends weakly on the other spins, and those are communicating with the right bath. However, the maximal effect of the \(j+1\)th \(\ell \)-spin is a change of order \({\mathrm e}^{-1/\xi }\) in the Hamiltonian, and if we restrict attention to the first \(j-1\) spins, then this maximal effect is not bigger than \({\mathrm e}^{-2/\xi }\), etc. Hence the conclusion above remains valid.

References

  1. Lepri, S., Livi, R., Politi, A.: Thermal conduction in classical low-dimensional lattices. Phys. Rep. 377(1), 1–80 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  2. Dhar, Abhishek: Heat transport in low-dimensional systems. Adv. Phys. 57(5), 457–537 (2008)

    Article  ADS  Google Scholar 

  3. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492 (1958)

    Article  ADS  Google Scholar 

  4. Imbrie, J.Z.: On many-body localization for quantum spin chains. J. Stat. Phys. 163(5), 998–1048 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Pal, A., Huse, D.A.: Many-body localization phase transition. Phys. Rev. B 82(17), 174411 (2010)

    Article  ADS  Google Scholar 

  6. Basko, D.M., Aleiner, I.L., Altshuler, B.L.: Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321(5), 1126–1205 (2006)

    Article  ADS  MATH  Google Scholar 

  7. Gornyi, I.V., Mirlin, A.D., Polyakov, D.G.: Interacting electrons in disordered wires: Anderson localization and low-t transport. Phys. Rev. Lett. 95(20), 206603 (2005)

    Article  ADS  Google Scholar 

  8. Žnidarič, M., Prosen, T., Prelovšek, P.: Many-body localization in the heisenberg x x z magnet in a random field. Phys. Rev. B 77(6), 064426 (2008)

    Article  ADS  Google Scholar 

  9. Ros, V., Müller, M., Scardicchio, A.: Integrals of motion in the many-body localized phase. Nucl. Phys. B 891, 420–465 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Nandkishore, R., Huse, D.A.: Many body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015)

    Article  ADS  Google Scholar 

  11. Monthus, C.: Boundary-driven Lindblad dynamics of random quantum spin chains: strong disorder approach for the relaxation, the steady state and the current. ArXiv e-prints (2017)

  12. Ros, V., Mueller, M.: Remanent magnetization: signature of many-body localization in quantum antiferromagnets. arXiv preprint (2016). arXiv:1608.06225

  13. Vasseur, R., Parameswaran, S.A., Moore, J.E.: Quantum revivals and many-body localization. Phys. Rev. B 91(14), 140202 (2015)

    Article  ADS  Google Scholar 

  14. Serbyn, M., Papić, Z., Abanin, D.A.: Quantum quenches in the many-body localized phase. Phys. Rev. B 90(17), 174302 (2014)

    Article  ADS  Google Scholar 

  15. Abdul-Rahman, H., Nachtergaele, B., Sims, R., Stolz, G.: Entanglement dynamics of disordered quantum xy chains. Lett. Math. Phys. 106(5), 649–674 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Serbyn, Maksym, Papić, Z., Papić, D.A.: Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett. 111(12), 127201 (2013)

    Article  ADS  Google Scholar 

  17. Huse, D.A., Nandkishore, R., Oganesyan, V.: Phenomenology of fully many-body-localized systems. Phys. Rev. B 90(17), 174202 (2014)

    Article  ADS  Google Scholar 

  18. Iubini, S., Lepri, S., Livi, R., Politi, A.: Boundary-induced instabilities in coupled oscillators. Phys. Rev. Lett. 112(13), 134101 (2014)

    Article  ADS  Google Scholar 

  19. Iacobucci, A., Legoll, F., Olla, S., Stoltz, G.: Negative thermal conductivity of chains of rotors with mechanical forcing. Phys. Rev. E 84(6), 061108 (2011)

    Article  ADS  Google Scholar 

  20. Iubini, S., Lepri, S., Livi, R., Politi, A.: Coupled transport in rotor models. arXiv preprint (2016). arXiv:1603.06847

  21. Prosen, T.: Exact nonequilibrium steady state of a strongly driven open x x z chain. Phys. Rev. Lett. 107(13), 137201 (2011)

    Article  ADS  Google Scholar 

  22. Prosen, T.: Matrix product solutions of boundary driven quantum chains. J. Phys. A 48(37), 373001 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. De Roeck, W., Huveneers, F., Müller, M., Schiulaz, M.: Absence of many-body mobility edges. Phys. Rev. B 93(1), 014203 (2016)

    Article  ADS  Google Scholar 

  24. Agarwal, K., Altman, E., Demler, E., Gopalakrishnan, S., Huse, D.A., Knap, M.: Rare region effects and dynamics near the many-body localization transition. ArXiv e-prints (2016)

  25. Dhar, A.: Heat conduction in the disordered harmonic chain revisited. Phys. Rev. Lett. 86(26), 5882 (2001)

    Article  ADS  Google Scholar 

  26. Casher, A., Lebowitz, J.L.: Heat flow in regular and disordered harmonic chains. J. Math. Phys. 12(8), 1701–1711 (1971)

    Article  ADS  Google Scholar 

  27. Basko, D.M.: Weak chaos in the disordered nonlinear Schrödinger chain: destruction of Anderson localization by arnold diffusion. Ann. Phys. 326(7), 1577–1655 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Oganesyan, V., Pal, A., Huse, D.A.: Energy transport in disordered classical spin chains. Phys. Rev. B 80, 115104 (2009)

    Article  ADS  Google Scholar 

  29. Huveneers, François: Drastic fall-off of the thermal conductivity for disordered lattices in the limit of weak anharmonic interactions. Nonlinearity 26(3), 837 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. De Roeck, Wojciech, Huveneers, François: Asymptotic quantum many-body localization from thermal disorder. Commun. Math. Phys. 332(3), 1017–1082 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. De Roeck, W., Huveneers, F.: Asymptotic localization of energy in nondisordered oscillator chains. Commun. Pure Appl. Math. 68(9), 1532–1568 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Matsuda, H., Ishii, K.: Localization of normal modes and energy transport in the disordered harmonic chain. Prog. Theor. Phys. Suppl. 45, 56–86 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  33. Dhar, A., Saito, K., Hänggi, P.: Nonequilibrium density-matrix description of steady-state quantum transport. Phys. Rev. E 85(1), 011126 (2012)

    Article  ADS  Google Scholar 

  34. Chaudhuri, A., Kundu, A., Roy, D., Dhar, A., Lebowitz, J.L., Spohn, H.: Heat transport and phonon localization in mass-disordered harmonic crystals. Phys. Rev. B 81(6), 064301 (2010)

    Article  ADS  Google Scholar 

  35. Davies, E.B.: Markovian master equations. Commun. Math. Phys. 39(2), 91–110 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Spohn, H., Lebowitz, J.L.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys 38, 109–142 (1978)

    Google Scholar 

  37. Luitz, D.J., Laflorencie, N., Alet, F.: Many-body localization edge in the random-field Heisenberg chain. Phys. Rev. B 91(8), 081103 (2015)

    Article  ADS  Google Scholar 

  38. Benenti, G., Casati, G., Prosen, T., Rossini, D., Žnidarič, M.: Charge and spin transport in strongly correlated one-dimensional quantum systems driven far from equilibrium. Phys. Rev. B 80(3), 035110 (2009)

    Article  ADS  Google Scholar 

  39. Levi, E., Heyl, M., Lesanovsky, I., Garrahan, J.P.: Robustness of many-body localization in the presence of dissipation. Phys. Rev. Lett. 116(23), 237203 (2016)

    Article  ADS  Google Scholar 

  40. Fischer, M.H., Maksymenko, M., Altman, E.: Dynamics of a many-body-localized system coupled to a bath. Phys. Rev. Lett. 116(16), 160401 (2016)

    Article  ADS  Google Scholar 

  41. Žnidarič, M., Scardicchio, A., Varma, V.K.: Diffusive and subdiffusive spin transport in the ergodic phase of a many-body localizable system. Phys. Rev. Lett. 117(4), 040601 (2016)

    Article  Google Scholar 

  42. Medvedyeva, M.V., ž Prosen, T., Žnidarič, M.: Influence of dephasing on many-body localization. Phys. Rev. B 93, 094205 (2016)

    Article  ADS  Google Scholar 

  43. Žnidarič, M., Mendoza-Arenas, J.J., Clark, S.R., Goold, J.: Dephasing enhanced spin transport in the ergodic phase of a many-body localizable system. Ann. Phys. 1600298 (2016)

  44. Johansson, J.R., Nation, P.D., Nori, Franco: Qutip 2: a python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184(4), 1234–1240 (2013)

    Article  ADS  Google Scholar 

  45. Dymov, A.: Nonequilibrium statistical mechanics of hamiltonian rotators with alternated spins. J. Stat. Phys. 158(4), 968–1006 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work grew out of discussions of F. Huveneers with J. Lebowitz and D. Huse. We are most grateful to both of them. Moreover F. H. thanks J. Lebowitz for his kind invitation at IAS (Princeton), where this work started. F. H. thanks the IAS (Princeton), the ANR grant JCJC, and the CNRS InPhyNiTi Grant (MaBoLo) for financial support. AD acknowledges support from the Indo-Israel joint research project No. 6-8/2014(IC) and from the French Ministry of Education through the Grant ANR (EDNHS). W.D.R. and M.S. are thankful to the DFG (German Research Fund) and the InterUniversity Attraction Pole DYGEST (Belspo, Phase VII/18) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech De Roeck.

Appendix: Alternative Derivation of the \(\lambda \rightarrow 0\) Limit

Appendix: Alternative Derivation of the \(\lambda \rightarrow 0\) Limit

We propose a second way to derive Eq. (2.10), i.e. the expression of the NESS profile in the limit \(\lambda \rightarrow 0\). This is somewhat less straightforward but possibly more intuitive. We obtain also a little bit more: we derive an effective dynamics in the limit \(\lambda \rightarrow 0\).

1.1 Equations of Motion

We massage the equations of motion to arrive at (3.9) below. First, it is convenient to adopt a matrix notation:

$$\begin{aligned} {\mathrm d}|q \rangle&= |p \rangle {\mathrm d}t, \\ {\mathrm d}|p \rangle&= - H |q \rangle {\mathrm d}t - \lambda \sum _{x\in \partial \Lambda } p_x |x \rangle {\mathrm d}t + \sqrt{2\lambda } \sum _{x\in \partial \Lambda } \sqrt{T}_x {\mathrm d}b_x(t) |x \rangle . \end{aligned}$$

Next, we introduce an effective time \(\tau = \lambda t\), so that the equations become

$$\begin{aligned} {\mathrm d}|q \rangle&= \lambda ^{-1} |p \rangle {\mathrm d}\tau , \\ {\mathrm d}|p \rangle&= - \lambda ^{-1} H |q \rangle {\mathrm d}\tau - \sum _{x\in \partial \Lambda } p_x |x \rangle {\mathrm d}\tau + \sqrt{2} \sum _{x\in \partial \Lambda } \sqrt{T}_x {\mathrm d}b_x(\tau ) |x \rangle . \end{aligned}$$

Next we move to the normal modes of the isolated system. Recall (2.9). Let us introduce the notations

$$\begin{aligned} q(k) = \sum _x \psi _k(x) q_x, \quad p(k) = \sum _x \psi _k(x) p_x \end{aligned}$$

Then the equations of motion can be recast as

$$\begin{aligned} {\mathrm d}q(k)&= \lambda ^{-1}p(k) {\mathrm d}\tau , \\ {\mathrm d}p(k)&= - \lambda ^{-1} \omega _k^2q(k) {\mathrm d}\tau - \sum _{x\in \partial \Lambda } p_x \psi _k(x) {\mathrm d}\tau + \sqrt{2} \sum _{x\in \partial \Lambda } \sqrt{T}_x \psi _k (x) {\mathrm d}b_x(\tau ). \end{aligned}$$

It is convenient to pass from the (qp) coordinates to the \((a^*,a)\) coordinates:

$$\begin{aligned}&a(k) = q(k) + \frac{\mathrm {i}}{\omega _k} p(k), \quad a^*(k) = q(k) - \frac{\mathrm {i}}{\omega _k} p(k), \\&q(k) = \frac{1}{2} \big ( a(k) + a^*(k) \big ), \quad p(k) = \frac{\omega _k}{2 \mathrm {i}} \big (a(k) - a^*(k)\big ). \end{aligned}$$

The equations become

$$\begin{aligned} {\mathrm d}a(k) = \frac{- \mathrm {i}\omega _k}{\lambda } a(k) {\mathrm d}\tau + \frac{\mathrm {i}}{\omega _k} \left( - \sum _{x\in \partial \Lambda } p_x \psi _k(x) {\mathrm d}\tau + \sqrt{2} \sum _{x\in \partial \Lambda } \sqrt{T}_x \psi _k (x) {\mathrm d}b_x(\tau ) \right) .\quad \end{aligned}$$
(3.9)

1.2 Limit \(\lambda \rightarrow 0\): Resonant Averaging

We now consider the limit \(\lambda \rightarrow 0\). We follow the method used by Dymov in [45]. The first term in the rhs of (3.9) is dominant on short time scales, and if the second term was absent, the solution would be given by \(a(k,\tau ) = {\mathrm e}^{-\mathrm {i}\omega _k \tau /\lambda } a(k,0)\). This motivates the change of variables

$$\begin{aligned} a(k,\tau ) = {\mathrm e}^{-\mathrm {i}\omega _k \tau /\lambda } A(k,\tau ). \end{aligned}$$

The evolution equation for A(k) is

$$\begin{aligned} {\mathrm d}A(k) = \frac{\mathrm {i}\, {\mathrm e}^{\mathrm {i}\omega _k \tau /\lambda }}{\omega _k} \left( - \sum _{x\in \partial \Lambda } p_x \psi _k(x) {\mathrm d}\tau + \sqrt{2} \sum _{x\in \partial \Lambda } \sqrt{T}_x \psi _k (x) {\mathrm d}b_x(\tau ) \right) . \end{aligned}$$

The rhs is oscillating fast at any frequency \(\omega _k\) (the spectrum of H is bounded away from 0). We exploit this to obtain an expression in the limit \(\lambda \rightarrow 0\). First we analyze the noise term and then the dissipative term.

1.2.1 Noise Term

A computation of second moments shows that, in general,

$$\begin{aligned} \sqrt{2} B_{k,x}(t) : = B^{(1)}_{k,x} (t) + \mathrm {i}B^{(2)}_{k,x} (t) : = \lim _{\lambda \rightarrow 0} \sqrt{2} \int _0^t {\mathrm e}^{-\mathrm {i}\omega _k s/\lambda } {\mathrm d}b_{x}(s) \end{aligned}$$

where \(B^{(i)}_{k,x}, i=1,2\) are standard independent Brownian motions and the limit is in law, jointly for the collection of processes indexed by kxi. As noticed in [45], for a single kx, the noise ‘bifurcates’ in the limit, since two independent copies (\(i=1,2\)) are generated from a single process. There is more here: each Brownian motion ‘\(2|\Lambda |-\)furcates’, since for each mode k the corresponding noises are independent. Hence the noise term in our effective equation will be given by

$$\begin{aligned} \frac{\mathrm {i}\sqrt{2}}{\omega _k} \sum _{x\in \partial \Lambda } \sqrt{T}_x \psi _k (x) {\mathrm d}B_{k,x}(\tau ). \end{aligned}$$
(3.10)

1.2.2 Dissipative Term

We work out

$$\begin{aligned} p_x= & {} \sum _k \psi _k^* (x) p(k) = \sum _k \psi _k^* (x) \frac{\omega _k}{2 \mathrm {i}} (a_k - a_k^*) \\= & {} \frac{1}{2 \mathrm {i}} \sum _k \psi _k^*(x) \omega _k \big ( {\mathrm e}^{-\mathrm {i}\omega _k \tau /\lambda } A_k - {\mathrm e}^{\mathrm {i}\omega _k \tau /\lambda } A_k^* \big ). \end{aligned}$$

This term will be multiplied by \({\mathrm e}^{\mathrm {i}\omega _k \tau /\lambda }\). Hence, in the limit \(\lambda \rightarrow 0\), only the term with the factor \({\mathrm e}^{-\mathrm {i}\omega _k \tau / \lambda }\) remains. We obtain the dissipation term

$$\begin{aligned} - \frac{1}{2} \sum _{x\in \partial \Lambda } |\psi _k(x)|^2 A_k. \end{aligned}$$
(3.11)

In conclusion, we find that the effective equation in the limit \(\lambda \rightarrow 0\) is given by

$$\begin{aligned} dA(k) = \frac{\mathrm {i}\sqrt{2}}{\omega _k} \sum _{x\in \partial \Lambda } \sqrt{T}_x \psi _k (x) {\mathrm d}B_{k,x}(\tau ) - \frac{1}{2} \sum _{x\in \partial \Lambda } |\psi _k(x)|^2 A_k \end{aligned}$$

Since all modes have now been decoupled, it is straightforward to recover the temperature profile (2.10).

1.3 Comments

This derivation requires the limit \(\lambda \rightarrow 0\) to be taken before the thermodynamic limit \(\Lambda \rightarrow {\mathbb Z}^d\). Indeed, when arguing that the noises corresponding to the different modes k become independent, we relied on \(\lambda \) being much smaller than the difference between any two frequencies \(\omega _k\). This derivation would hence fail if the \(\omega _k\) were to form a continuum. For localized systems, the situation is more subtle: since each site in the chain sees effectively only a few modes, the treatment above becomes correct again. A more careful argument for this was given in Sect. 2.2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Roeck, W., Dhar, A., Huveneers, F. et al. Step Density Profiles in Localized Chains. J Stat Phys 167, 1143–1163 (2017). https://doi.org/10.1007/s10955-017-1769-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1769-z

Keywords

Navigation