Skip to main content
Log in

Asymptotic Quantum Many-Body Localization from Thermal Disorder

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a quantum lattice system with infinite-dimensional on-site Hilbert space, very similar to the Bose–Hubbard model. We investigate many-body localization in this model, induced by thermal fluctuations rather than disorder in the Hamiltonian. We provide evidence that the Green–Kubo conductivity κ(β), defined as the time-integrated current autocorrelation function, decays faster than any polynomial in the inverse temperature β as \({\beta \to 0}\). More precisely, we define approximations \({\kappa_{\tau}(\beta)}\) to κ(β) by integrating the current-current autocorrelation function up to a large but finite time \({\tau}\) and we rigorously show that \({\beta^{-n}\kappa_{\beta^{-m}}(\beta)}\) vanishes as \({\beta \to 0}\), for any \({n,m \in \mathbb{N}}\) such that mn is sufficiently large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492 (1958)

    Article  ADS  Google Scholar 

  2. Fröhlich J., Spencer T.: Absence of diffusion in the Anderson tight binding model for large disorder or low energy. Commun. Math. Phys. 88(2), 151–184 (1983)

    Article  MATH  ADS  Google Scholar 

  3. Basko D., Aleiner I., Altshuler B.: Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321(5), 1126–1205 (2006)

    Article  MATH  ADS  Google Scholar 

  4. Vosk R., Altman E.: Many-body localization in one dimension as a dynamical renormalization group fixed point. Phys. Rev. Lett. 110(6), 067204 (2013)

    Article  ADS  Google Scholar 

  5. Pal A., Huse D.A.: Many-body localization phase transition. Phys. Rev. B 82(17), 174411 (2010)

    Article  ADS  Google Scholar 

  6. Oganesyan V., Huse D.A.: Localization of interacting fermions at high temperature. Phys. Rev. B 75(15), 155111 (2007)

    Article  ADS  Google Scholar 

  7. Imbrie, J., Spencer, T.: Personal communication and research talks (2012)

  8. Linden N., Popescu S., Short A.J., Winter A.: Quantum mechanical evolution towards thermal equilibrium. Phys. Rev. E 79, 061103 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. Lebowitz J.L., Goldstein S., Mastrodonato C., Tumulka R., Zanghi N.: On the approach to thermal equilibrium of macroscopic quantum systems. Phys. Rev. E 81, 011109 (2010)

    Article  ADS  Google Scholar 

  10. Aizenman M., Warzel S.: Extended states in a Lifshitz tail regime for random Schrödinger operators on trees. Phys. Rev. Lett. 106(13), 136804 (2011)

    Article  ADS  Google Scholar 

  11. Imbrie, J., Spencer, T.: Unpublished note (2013)

  12. Oganesyan V., Pal A., Huse D.A.: Energy transport in disordered classical spin chains. Phys. Rev. B 80(11), 115104 (2009)

    Article  ADS  Google Scholar 

  13. Basko D.: Weak chaos in the disordered nonlinear Schrödinger chain: destruction of Anderson localization by Arnold diffusion. Ann. Phys. 326(7), 1577–1655 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Fishman S., Krivolapov Y., Soffer A.: Perturbation theory for the nonlinear Schrödinger equation with a random potential. Nonlinearity 22(12), 2861 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Huveneers F.: Drastic fall-off of the thermal conductivity for disordered lattices in the limit of weak anharmonic interactions. Nonlinearity 26(3), 837–854 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Aubry S., André G.: Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Israel Phys. Soc. 3(133), 18 (1980)

    Google Scholar 

  17. Iyer S., Oganesyan V., Refael G., Huse D.A.: Many-body localization in a quasiperiodic system. Phys. Rev. B 87, 134202 (2013)

    Article  ADS  Google Scholar 

  18. Schiulaz, M., Müller, M.: Ideal quantum glass transitions: many-body localization without quenched disorder. arXiv:1309.1082 (2013)

  19. De Roeck, W., Huveneers, F.: Search for many-body localization in translation-invariant systems (2014). arXiv:1405.3279

  20. De Roeck, W., Huveneers, F.: Asymptotic localization of energy in non-disordered oscillator chains (2013). arXiv:1305.5127

  21. Rumpf B.: Simple statistical explanation for the localization of energy in nonlinear lattices with two conserved quantities. Phys. Rev. E 69(1), 016618 (2004)

    Article  ADS  Google Scholar 

  22. Bonetto, F., Lebowitz, J.L., Rey-Bellet, L.: Fourier’s law: a challenge to theorists. In: Fokas, A., Grigoryan, A., Kibble, T., Zegarlinsky, B. (eds) Mathematical Physics 2000. Imperial College, London, p. 128 (2000)

  23. Nachtergaele, B., Sims, R.: Lieb–Robinson bounds in quantum many-body physics, “Entropy and the Quantum”, Contemporary Mathematics, vol. 529. Amer. Math. Soc., Providence, pp. 141–176 (2010). arXiv:1004.2086

  24. Abdesselam A., Procacci A., Scoppola B.: Clustering bounds on n-point correlations for unbounded spin systems. J. Stat. Phys. 136(3), 405–452 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Cipriani, A., Pra, P.D.: Decay of correlations for quantum spin systems with a transverse field: a dynamic approach (2010). arXiv:1005.3547

  26. Bodineau T., Helffer B.: The log-Sobolev inequality for unbounded spin systems. J. Funct. Anal. 166(1), 168–178 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Netočný, K., Redig, F.: Large deviations for quantum spin systems. J. Stat. Phys. 117(521) (2004)

  28. Ueltschi D.: Cluster expansions and correlation functions. Moscow Math. J. 4, 511–522 (2004)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech De Roeck.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Roeck, W., Huveneers, F. Asymptotic Quantum Many-Body Localization from Thermal Disorder. Commun. Math. Phys. 332, 1017–1082 (2014). https://doi.org/10.1007/s00220-014-2116-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2116-8

Keywords

Navigation