Skip to main content
Log in

Emergent SO(3) Symmetry of the Frictionless Shear Jamming Transition

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the shear jamming of athermal frictionless soft spheres, and find that in the thermodynamic limit, a shear-jammed state exists with different elastic properties from the isotropically-jammed state. For example, shear-jammed states can have a non-zero residual shear stress in the thermodynamic limit that arises from long-range stress-stress correlations. As a result, the ratio of the shear and bulk moduli, which in isotropically-jammed systems vanishes as the jamming transition is approached from above, instead approaches a constant. Despite these striking differences, we argue that in a deeper sense, the shear jamming and isotropic jamming transitions actually have the same symmetry, and that the differences can be fully understood by rotating the six-dimensional basis of the elastic modulus tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. A rescaling is necessary, as shown, e.g. in Ref. [28].

  2. We establish that a configuration is jammed when it has a rigid backbone (not all the particles are rattlers) and the number of contacts in the rigid cluster is above the isostatic value.

  3. Since we apply strains only up to \(\gamma _\mathrm {MAX}=0.4\), we are unable to capture the high \(\gamma \) tail of the distribution of \(\gamma _\mathrm {c}^\Lambda \). As a result, we show the median of \(\gamma _\mathrm {c}^\Lambda \) instead of the mean, and consider only values of \(\phi \) and N such that \(f_\mathrm {s}> 0.5\).

  4. For \(\phi =0.643\), \(N=4096\), the data yield consistent results, but with larger error bars due to the difficulty in obtaining shear-jammed states (see Fig. 1–center, inset).

  5. Despite the stressed differences between isotropic and shear jamming, we will show in Sect. 5 that it is possible to rationalize the different exponents in order to show that the shear does not change the universality class of the jamming transition.

  6. For example one could be interested in the correlators obtained by expanding the traceless stress tensor or the pressure.

References

  1. Liu, A.J., Nagel, S.R.: The jamming transition and the marginally jammed solid. Annu. Rev. Condens. Matter Phys. 1, 34769 (2010)

    Article  Google Scholar 

  2. Xu, N., Wyart, M., Liu, A.J., Nagel, S.R.: Excess vibrational modes and the boson peak in model glasses. Phys. Rev. Lett. 98, 175502 (2007)

    Article  ADS  Google Scholar 

  3. Wyart, M., Liang, H., Kabla, A., Mahadevan, L.: Elasticity of floppy and stiff random networks. Phys. Rev. Lett. 101, 215501 (2008)

    Article  ADS  Google Scholar 

  4. Phillips, J.C.: Topology of covalent non-crystalline solids I: short-range order in chalcogenide alloys. J. Non-Cryst. Solids 34, 153–181 (1979)

    Article  ADS  Google Scholar 

  5. Phillips, J.C.: Topology of covalent non-crystalline solids II: medium-range order in chalcogenide alloys and A Si (Ge). J. Non-Cryst. Solids 43, 37–77 (1981)

    Article  ADS  Google Scholar 

  6. Boolchand, P., Lucovsky, G., Phillips, J.C., Thorpe, M.F.: Self-organization and the physics of glassy networks. Phil. Mag. 85, 3823–3838 (2005)

    Article  ADS  Google Scholar 

  7. Song, C., Wang, P., Makse, H.A.: A phase diagram for jammed matter. Nature 453, 629–632 (2008)

    Article  ADS  Google Scholar 

  8. Henkes, S., van Hecke, M., van Saarloos, W.: Critical jamming of frictional grains in the generalized isostaticity picture. Europhys. Lett. 90, 14003 (2010)

    Article  ADS  Google Scholar 

  9. Papanikolaou, S., O’Hern, C.S., Shattuck, M.D.: Isostaticity at frictional jamming. Phys. Rev. Lett. 110, 198002 (2013)

    Article  ADS  Google Scholar 

  10. Zhang, Z., et al.: Thermal vestige of the zero-temperature jamming transition. Nature 459, 230–233 (2009)

    Article  ADS  Google Scholar 

  11. Donev, A., et al.: Improving the density of jammed disordered packings using ellipsoids. Science 303, 990–993 (2004)

    Article  ADS  Google Scholar 

  12. Zeravcic, Z., Xu, N., Liu, A.J., Nagel, S.R., van Saarloos, W.: Excitations of ellipsoid packings near jamming. Europhys. Lett. 87, 26001 (2009)

    Article  ADS  Google Scholar 

  13. Mailman, M., Schreck, C.F., O’Hern, C.S., Chakraborty, B.: Jamming in systems composed of frictionless ellipse-shaped particles. Phys. Rev. Lett. 102, 255501 (2009)

    Article  ADS  Google Scholar 

  14. Goodrich, C., Liu, A., Nagel, S.: Solids between the mechanical extremes of order and disorder. Nat. Phys. 10, 578–581 (2014)

    Article  Google Scholar 

  15. Somfai, E., van Hecke, M., Ellenbroek, W.G., Shundyak, K., van Saarloos, W.: Critical and noncritical jamming of frictional grains. Phys. Rev. E 75, 020301(R) (2007)

    Article  ADS  Google Scholar 

  16. Shundyak, K., van Hecke, M., van Saarloos, W.: Force mobilization and generalized isostaticity in jammed packings of frictional grains. Phys. Rev. E 75, 010301(R) (2007)

    Article  ADS  Google Scholar 

  17. Bi, D., Zhang, J., Chakraborty, B., Behringer, R.P.: Jamming by shear. Nature 480, 355358 (2011)

    Article  Google Scholar 

  18. Bertrand, T., Behringer, R.P., Chakraborty, B., O’Hern, C.S., Shattuck, M.D.: Protocol dependence of the jamming transition. Phys. Rev. E 93, 012901 (2016)

    Article  ADS  Google Scholar 

  19. Imole, O.I., Kumar, N., Magnanimo, V., Luding, S.: Hydrostatic and shear behavior of frictionless granular assemblies under different deformation conditions. Kona Powder Part. J. 30, 84–108 (2013)

    Article  Google Scholar 

  20. Vinutha, H.A., Sastry, S.: Disentangling the role of structure and friction in shear jamming. Nat. Phys. doi:10.1038/nphys3658. arXiv:1510.00962

  21. Vinutha, H.A., Sastry, S.: Geometric aspects of shear jamming induced by deformation of frictionless sphere packings (in preparation)

  22. Peyneau, P.-E., Roux, J.-N.: Frictionless bead packs have macroscopic friction, but no dilatancy. Phys. Rev. E 78, 011307 (2008)

    Article  ADS  Google Scholar 

  23. Peyneau, P.-E., Roux, J.-N.: Solidlike behavior and anisotropy in rigid frictionless bead assemblies. Phys. Rev. E 78, 041307 (2008)

    Article  ADS  Google Scholar 

  24. Goodrich, C.P., Liu, A.J., Sethna, J.P.: Scaling ansatz for the jamming transition. Proc. Nat. Acad. Sci. 113(35), 97459750 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wyart, M.: On the rigidity of amorphous solids. Ann. Phys. 30, 3 (2005). doi:10.1051/anphys:2006003

    Article  Google Scholar 

  26. Wyart, M.: Elasticity of soft particles and colloids near random close packing. In: Fernandez, A., Mattsson, J., Wyss, H.M., Weitz, D.A. (eds.) Microgels: Synthesis, Properties and Applications, pp. 195–206. Wiley, Weinheim (2011). arXiv:0806.4653

    Google Scholar 

  27. Zaccone, A., Terentjev, E.M.: Short-range correlations control the G/K and Poisson ratios of amorphous solids and metallic glasses. J. Appl. Phys. 115, 033510 (2014). doi:10.1063/1.4862403

    Article  ADS  Google Scholar 

  28. Vitelli, V., Xu, N., Wyart, M., Liu, A.J., Nagel, S.R.: Heat transport in model jammed solids. Phys. Rev. E 81, 021301 (2010)

    Article  ADS  Google Scholar 

  29. Bitzek, E., Koskinen, P., Gähler, F., Moseler, M., Gumbsch, P.: Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006)

    Article  ADS  Google Scholar 

  30. O’Hern, C.S., Silbert, L.E., Liu, A.J., Nagel, S.R.: Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68, 011306 (2003)

    Article  ADS  Google Scholar 

  31. Madadi, M., Tsoungui, O., Lätzel, M., Luding, S.: On the fabric tensor of polydisperse granular media in 2d. Int. J. Sol. Struct. 41(9), 2563 (2004)

    Article  MATH  Google Scholar 

  32. Goodrich, C.P., Liu, A.J., Nagel, S.R.: Finite-size scaling at the jamming transition. Phys. Rev. Lett. 109(9), 095704 (2012)

    Article  ADS  Google Scholar 

  33. Goodrich, C.P., Dagois-Bohy, S., Tighe, B.P., van Hecke, M., Liu, A.J., Nagel, S.R.: Jamming in finite systems: stability, anisotropy, fluctuations, and scaling. Phys. Rev. E 90, 022138 (2014)

    Article  ADS  Google Scholar 

  34. Goodrich, C.P., Liu, A.J., Nagel, S.R.: Contact nonlinearities and linear response in jammed particulate packings. Phys. Rev. E 90, 022201 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors owe a great intellectual debt to Leo Kadanoff. His demonstration of how scaling arguments can be used to understand and categorize the universality of physical phenomena was an inspiration for many of the ideas in this paper. His catholic taste in choosing problems, his success in developing simple models to understand complex phenomena, and his complete lack of snobbishness in deciding what problems were important allowed theory and experiment to work together to make progress throughout many areas of science. We dedicate this paper in his memory. We thank Valerio Astuti, Eric DeGiuli, Edan Lerner and Pierfrancesco Urbani for interesting discussions. This work was funded by the Simons Foundation for the collaboration “Cracking the Glass Problem” (454945 to A.J.L. for A.J.L. and J.P.S., 348126 to S.R.N. for S.R.N., and 454935 to G. Biroli for M.B.-J.), the National Science Foundation (DMR-1312160 for J.P.S.), the ERC Grant NPRGGLASS (279950 for M.B.-J.), and the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-05ER46199 (C.P.G.). M.B.-J. was also supported by MINECO, Spain, through the research Contract No. FIS2012-35719-C02, and by the FPU Program (Beca FPU, AP-2010-1318) (Ministerio de Educación, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Baity-Jesi.

Appendix: Stress Correlation Functions

Appendix: Stress Correlation Functions

The scalings of p, \(\sigma _{xy}\), \(\sigma _{xz}\), B, \(C_{xyxy}\) and \(C_{xzxz}\) can be understood microscopically in terms of the behavior of spatial bond correlations. We can express the average deviatoric squared stresses \(\tilde{\sigma }^2\), \(p^2\), \(\sigma _{xy}^2\) and \(\sigma _{xz}^2\) in terms of associated stress correlation functions \(C^{(\sigma )}(\mathbf {x}),C^{(p)}(\mathbf {x}),C^{(\sigma )}_{xy}(\mathbf {x})\) and \(C^{(\sigma )}_{xz}(\mathbf {x})\).

In order to do so, we extend the correlation function \(C^{(\sigma )}(\mathbf {x})\) defined in reference [24] to take into account the anisotropy caused by the shear. The stress tensor is defined through

$$\begin{aligned} \sigma _{\alpha \beta } = - \frac{1}{V} \sum _k^{N_b} b^{(k)}{\hat{r}^{(k)}_\alpha }{\hat{r}^{(k)}_\beta }\,, \end{aligned}$$
(2)

where the index k indicates a contact (bond) between two particles, \(N_b\) is the number of bonds, \(\mathbf {r}^{(k)}=\frac{\hat{r}^{(k)}}{|\mathbf {r}^{(k)}|}\) is the separation between the two touching particles, and \(b^{(k)}=f^{(k)} |\mathbf {r}^{\,(k)}|\), where \(f^{(k)}\) is the force of bond k. The product between generic components of the stress tensor is

$$\begin{aligned} \sigma _{\alpha \beta }\sigma _{\gamma \delta }&= \frac{1}{V^2}\sum _{k,k'} b^{(k)}b^{(k')}{\hat{r}^{(k)}_\alpha }{\hat{r}^{(k)}_\beta }\hat{r}^{(k')}_\gamma \hat{r}^{(k')}_\delta \nonumber \\&= \frac{1}{V^2}\sum _{k} {b^{(k)}}^2{\hat{r}^{(k)}_\alpha }{\hat{r}^{(k)}_\beta }\hat{r}^{(k)}_\gamma \hat{r}^{(k)}_\delta + \nonumber \\&\quad +\frac{1}{V^2}\sum _{k\ne k'}b^{(k)}b^{(k')}{\hat{r}^{(k)}_\alpha }{\hat{r}^{(k)}_\beta }\hat{r}^{(k')}_\gamma \hat{r}^{(k')}_\delta \end{aligned}$$
(3)

Taking out a factor \(N_b\), both terms can be seen as an average over the bonds,

$$\begin{aligned} \sigma _{\alpha \beta }\sigma _{\gamma \delta }&= \frac{N_b}{V^2}\left\langle b^2\,{\hat{r}^{(k)}_\alpha }{\hat{r}^{(k)}_\beta }\hat{r}^{(k)}_\gamma \hat{r}^{(k)}_\delta \right\rangle +\nonumber \\&\quad + \frac{N_b}{V^2}\left\langle \sum _{k\ne 0} b^{(0)}b^{(k)}\,{\hat{r}^{(0)}_\alpha }{\hat{r}^{(0)}_\beta }\hat{r}^{(k)}_\gamma \hat{r}^{(k)}_\delta \right\rangle \,. \end{aligned}$$
(4)

From the second term in the right hand side (r.h.s.) we can define a correlation function

$$\begin{aligned} C^{(\sigma )}_{\alpha \beta \gamma \delta }(\mathbf {x})= \left\langle \sum _{k\ne 0} b^{(0)}b^{(k)}\left[ {\hat{r}^{(0)}_\alpha }{\hat{r}^{(0)}_\beta }{\hat{r}^{(k)}_\gamma }{\hat{r}^{(k)}_\delta }\right] \delta \left( \left[ \mathbf {x}^{(0)}-\mathbf {x}^{(k)}\right] -\mathbf {x}\right) \right\rangle \,, \end{aligned}$$
(5)

where \(\mathbf {x}^{(k)}\) is the position of bond k.

The correlation function \(C^{(\sigma )}_{\alpha \beta \gamma \delta }(\mathbf {x})\) is related to the stress through

$$\begin{aligned} \sigma _{\alpha \beta }\sigma _{\gamma \delta }= \frac{N_b}{V^2}\left\langle b^2\,{\hat{r}^{(k)}_\alpha }{\hat{r}^{(k)}_\beta }\hat{r}^{(k)}_\gamma \hat{r}^{(k)}_\delta \right\rangle + \frac{N_b}{V^2}\int d^dx \,C^{(\sigma )}_{\alpha \beta \gamma \delta }(\mathbf {x})\,. \end{aligned}$$
(6)

With an analogous procedure it is possible to define a wide variety of correlation functions,Footnote 6 each with a relation that connects it to the stress.

In this instance we are interested in the correlation functions

$$\begin{aligned} C^{(\sigma )}(\mathbf {x})&= \left\langle \sum _{k\ne 0} b^{(0)}b^{(k)}\left[ (\hat{r}^{(0)}\cdot \hat{r}^{(k)})^2 -1/d\right] \delta \left( \left[ \mathbf {x}^{(0)}-\mathbf {x}^{(k)}\right] -\mathbf {x}\right) \right\rangle \,,\end{aligned}$$
(7)
$$\begin{aligned} C^{(p)}(\mathbf {x})&= \left\langle \sum _{k\ne 0} b^{(0)}b^{(k)}\left[ \frac{1}{d^2}\right] \delta \left( \left[ \mathbf {x}^{(0)}-\mathbf {x}^{(k)}\right] -\mathbf {x}\right) \right\rangle \,,\end{aligned}$$
(8)
$$\begin{aligned} C^{(\sigma )}_{xy}(\mathbf {x})&= \left\langle \sum _{k\ne 0} b^{(0)}b^{(k)}\left[ {\hat{r}^{(0)}_x}{\hat{r}^{(0)}_y}{\hat{r}^{(k)}_x}{\hat{r}^{(k)}_y}\right] \delta \left( \left[ \mathbf {x}^{(0)}-\mathbf {x}^{(k)}\right] -\mathbf {x}\right) \right\rangle \,,\end{aligned}$$
(9)
$$\begin{aligned} C^{(\sigma )}_{xz}(\mathbf {x})&= \left\langle \sum _{k\ne 0} b^{(0)}b^{(k)}\left[ {\hat{r}^{(0)}_x}{\hat{r}^{(0)}_z}{\hat{r}^{(k)}_x}{\hat{r}^{(k)}_z}\right] \delta \left( \left[ \mathbf {x}^{(0)}-\mathbf {x}^{(k)}\right] -\mathbf {x}\right) \right\rangle \,, \end{aligned}$$
(10)

that are related to the stress through

$$\begin{aligned} \tilde{\sigma }^2&= \frac{N_b}{V^2}\left\langle b^2\right\rangle \frac{d-1}{d} + \frac{N_b}{V^2}\int d^dx \,C^{(\sigma )}(\mathbf {x})\,,\end{aligned}$$
(11)
$$\begin{aligned} p^2&= \frac{N_b}{V^2d^2}\left\langle b^2\right\rangle + \frac{N_b}{V ^2}\int d^dx \,C^{(p)}(\mathbf {x})\,,\end{aligned}$$
(12)
$$\begin{aligned} \tilde{\sigma }_{xy}^2&= \frac{N_b}{V^2}\left\langle b^2\,\hat{r}_x^2\,\hat{r}_y^2 \right\rangle + \frac{N_b}{V ^2}\int d^dx \,C^{(\sigma )}_{xy}(\mathbf {x})\,,\end{aligned}$$
(13)
$$\begin{aligned} \tilde{\sigma }_{xz}^2&= \frac{N_b}{V^2}\left\langle b^2\,\hat{r}_x^2\,\hat{r}_z^2 \right\rangle + \frac{N_b}{V ^2}\int d^dx \,C^{(\sigma )}_{xz}(\mathbf {x})\,, \end{aligned}$$
(14)

The first term in the r.h.s. of Eqs. (6), (11), (12), (13), (14) is of order \(\left<b^2\right>/N\), while the second term depends on the integral of the correlation function. Let \(\mathcal {O}^2\) represent the l.h.s of any of these equations. If the corresponding correlation function is short-ranged then the integral is proportional to \(\left<b^2\right> N^0\), and \(\mathcal {O}^2\sim \left<b^2\right>/N \sim p^2/N\). However, if the correlation function is long-ranged, then the integral is proportional to \(\left<b^2\right> N\), and

$$\begin{aligned} \mathcal {O}^2 \sim \left<b^2\right> N^0 \sim p^2 N^0 \end{aligned}$$
(15)

In Fig. 5a and b we show that the correlation function \(C^{(\sigma )}(\mathbf {x})\) is short-ranged for isotropically-jammed states, and long-ranged for shear-jammed states: shear-jamming induces long-range correlations in the system, which lead to a non-zero deviatoric stress. The two bottom plots of Fig. 5 show that the correlation \(C^{(\sigma )}_{xy}(\mathbf {x})\) along the shear is long-ranged, whereas in the orthogonal direction \(C^{(\sigma )}_{xz}(\mathbf {x})\) is short-ranged, explaining why \(\sigma _{xy}\) and \(\sigma _{xz}\) scale differently.

Fig. 5
figure 5

Bond correlations \(C^{(\sigma )}(\mathbf {x}),C^{(\sigma )}_{xy}(\mathbf {x})\) and \(C^{(\sigma )}_{xz}(\mathbf {x})\), normalized with the square pressure \(p^2\), as a function of the distance x between bonds, for all system sizes at \(\sigma _{xy}=10^{-8}\). The integrals of the correlation functions are related with the square stresses through Eqs. (11), (12), (13), (14): if the integral is extensive (i.e. the correlation in long-ranged) then the related squared stress is of order \({p^2}\). If it is intensive (short-range correlations), the squared stress is of order \(p^2/N\). a Correlation \(C^{(\sigma )}(\mathbf {x})\) in isotropically-jammed packings. It is short-ranged (inset), so \(\tilde{\sigma }^2\sim {p^2}/N\) in such systems. b Correlation \(C^{(\sigma )}(\mathbf {x})\) in shear-jammed packings. It does not decay to zero (inset), so \(\tilde{\sigma }^2\sim p^2\) in such systems. c Correlation \(C^{(\sigma )}_{xz}(\mathbf {x})\) in shear-jammed packings. There are no long-ranged correlations orthogonal to the direction of shear jamming (inset), so \(\sigma _{xz}\sim {p^2}/N\). d Correlation \(C^{(\sigma )}_{xy}(\mathbf {x})\) in shear-jammed packings. The long-distance correlations decay to a positive constant, so \(\sigma _{xy}\sim p^2\). The insets depict a zoom of the same data of the larger plot, so that the differences between long-ranged correlation functions and short-ranged ones are more visible

The long-ranged nature of \(C^{(\sigma )}_{xy}(\mathbf {x})\) leads to the scaling \(\sigma _{xy}^2 \sim p^2\), consistent with Fig. 2. This in turn leads to the prediction that the scaling exponents for \(C_{xyxy}\) and B are the same, consistent with Fig. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baity-Jesi, M., Goodrich, C.P., Liu, A.J. et al. Emergent SO(3) Symmetry of the Frictionless Shear Jamming Transition. J Stat Phys 167, 735–748 (2017). https://doi.org/10.1007/s10955-016-1703-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1703-9

Keywords

Navigation