Skip to main content
Log in

Timescale divergence at the shear jamming transition

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We find that in simulations of quasi-statically sheared frictional disks, the shear jamming transition can be characterized by an abrupt jump in the number of force bearing contacts between particles. This mechanical coordination number increases discontinuously from Z = 0 to \(Z \gtrsim d +1\) at a critical shear value \(\gamma _c\), as opposed to a smooth increase in the number of geometric contacts. This is accompanied by a diverging timescale \(\tau ^*\) that characterizes the time required by the system to attain force balance when subjected to a perturbation. As the global shear \(\gamma \) approaches the critical value \(\gamma _c\) from below, one observes the divergence of the time taken to relax to a state where all the inter-particle contacts have uniformly zero force. Above \(\gamma _{c}\), the system settles into a state characterized by finite forces between particles, with the timescale also increasing as \(\gamma \rightarrow \gamma _{c}^{+}\). By using two different protocols to generate force balanced configurations, we show that this timescale divergence is a robust feature that accompanies the shear jamming transition.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chaikin, P.M., Lubensky, T.C.: Principles of Condensed Matter Physics. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Debenedetti, P.G., Stillinger, F.H.: Supercooled liquids and the glass transition. Nature 410, 259 (2001)

    Article  ADS  Google Scholar 

  3. O’hern, C.S., Silbert, L.E., Liu, A.J., Nagel, S.R.: Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68, 011306 (2003)

    Article  ADS  Google Scholar 

  4. Cates, M., Wittmer, J., Bouchaud, J.-P., Claudin, P.: Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81, 1841 (1998)

    Article  ADS  Google Scholar 

  5. Bi, D., Zhang, J., Chakraborty, B., Behringer, R.: Jamming by shear. Nature 480, 355 (2011)

    Article  ADS  Google Scholar 

  6. Wyart, M., Cates, M.: Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Phys. Rev. Lett. 112, 098302 (2014)

    Article  ADS  Google Scholar 

  7. Sarkar, S., Bi, D., Zhang, J., Behringer, R., Chakraborty, B.: Origin of rigidity in dry granular solids. Phys. Rev. Lett. 111, 068301 (2013)

    Article  ADS  Google Scholar 

  8. Vinutha, H.A., Sastry, S.: Disentangling the role of structure and friction in shear jamming. Nat. Phys. 12, 578 (2016)

    Article  Google Scholar 

  9. Baity-Jesi, M., Goodrich, C.P., Liu, A.J., Nagel, S.R., Sethna, J.P.: Emergent SO(3) symmetry of the frictionless shear jamming transition. J. Stat. Phys. 167, 735 (2017)

    Article  ADS  Google Scholar 

  10. Urbani, P., Zamponi, F.: Shear yielding and shear jamming of dense hard sphere glasses. Phys. Rev. Lett. 118, 038001 (2017)

    Article  ADS  Google Scholar 

  11. Behringer, R.P., Chakraborty, B.: The physics of jamming for granular materials: a review. Rep. Prog. Phys. 82, 012601 (2018)

    Article  ADS  Google Scholar 

  12. Otsuki, M., Hayakawa, H.: Shear jamming, discontinuous shear thickening, and fragile state in dry granular materials under oscillatory shear. arXiv preprint arXiv:1810.03846 (2018)

  13. Howell, D., Behringer, R., Veje, C.: Stress fluctuations in a 2D granular Couette experiment: a continuous transition. Phys. Rev. Lett. 82, 5241 (1999)

    Article  ADS  Google Scholar 

  14. Majmudar, T., Sperl, M., Luding, S., Behringer, R.P.: Jamming transition in granular systems. Phys. Rev. Lett. 98, 058001 (2007)

    Article  ADS  Google Scholar 

  15. Sarkar, S., Chakraborty, B.: Shear-induced rigidity in athermal materials: a unified statistical framework. Phys. Rev. E 91, 042201 (2015)

    Article  ADS  Google Scholar 

  16. Henkes, S., Quint, D.A., Fily, Y., Schwarz, J.: Rigid cluster decomposition reveals criticality in frictional jamming. Phys. Rev. Lett. 116, 028301 (2016)

    Article  ADS  Google Scholar 

  17. Vinutha, H., Sastry, S.: Force networks and jamming in shear-deformed sphere packings. Phys. Rev. E 99, 012123 (2019)

    Article  ADS  Google Scholar 

  18. Morone, F., Burleson-Lesser, K., Vinutha, H., Sastry, S., Makse, H.A.: The jamming transition is a k-core percolation transition. Physica A 516, 172 (2019)

    Article  ADS  Google Scholar 

  19. Olsson, P., Teitel, S.: Critical scaling of shear viscosity at the jamming transition. Phys. Rev. Lett. 99, 178001 (2007)

    Article  ADS  Google Scholar 

  20. Ramola, K., Chakraborty, B.: Disordered contact networks in jammed packings of frictionless disks. J. Stat. Mech. Theory Exp. 2016, 114002 (2016)

    Article  MathSciNet  Google Scholar 

  21. Ramola, K., Chakraborty, B.: Scaling theory for the frictionless unjamming transition. Phys. Rev. Lett. 118, 138001 (2017)

    Article  ADS  Google Scholar 

  22. Vinutha, H.A.: Ph.D. Thesis, Tata Institute of Fundamental Research (2018)

  23. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29, 47 (1979)

    Article  Google Scholar 

  24. Silbert, L.E.: Jamming of frictional spheres and random loose packing. Soft Matter 6, 2918 (2010)

    Article  ADS  Google Scholar 

  25. Grob, M., Zippelius, A., Heussinger, C.: Rheological chaos of frictional grains. Phys. Rev. E 93, 030901 (2016)

    Article  ADS  Google Scholar 

  26. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  27. Vinutha, H., Sastry, S.: Geometric aspects of shear jamming induced by deformation of frictionless sphere packings. J. Stat. Mech. Theory Exp. 2016, 094002 (2016)

    Article  Google Scholar 

  28. Péter, H., Libál, A., Reichhardt, C., Reichhardt, C.J.: Crossover from jamming to clogging behaviours in heterogeneous environments. Sci Rep 8, 10252 (2018)

    Article  ADS  Google Scholar 

  29. Ikeda, A., Kawasaki, T., Berthier, L., Saitoh, K., Hatano, T.: arXiv Preprint arXiv:1904.07359 (2019)

  30. Das, P., Vinutha, H. A., Sastry, S.: Unified phase diagram of reversible-irreversible, jamming and yielding transitions in cyclically sheared soft sphere packings. arXiv preprint arXiv:1907.08503 (2019)

  31. Seto, R., Singh, A., Chakraborty, B., Denn, M. M., Morris, J. F.: Shear jamming and fragility in dense suspensions. arXiv preprint arXiv:1902.04361 (2019)

Download references

Acknowledgements

We dedicate this work to the memory of Bob Behringer whose insightful experiments with granular matter are an inspiration to us all. We acknowledge support from the Indo-US Science and Technology Forum (grant no. IUSSTF/JC-026/2016). The work of BC and KR has been supported by NSF-CBET 1605428. BC acknowledges a fellowship from the Simons Foundation. SS and HAV gratefully acknowledge TUE-CMS, SSL, JNCASR, for computational resources and support. SS acknowledges support through the J C Bose Fellowship, DST, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikanth Sastry.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: In Memoriam of Robert P. Behringer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinutha, H.A., Ramola, K., Chakraborty, B. et al. Timescale divergence at the shear jamming transition. Granular Matter 22, 16 (2020). https://doi.org/10.1007/s10035-019-0983-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0983-6

Keywords

Navigation