Skip to main content

Advertisement

Log in

Quantum Griffiths Inequalities

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a general framework of Griffiths inequalities for quantum systems. Our approach is based on operator inequalities associated with self-dual cones and provides a consistent viewpoint of the Griffiths inequality. As examples, we discuss the quantum Ising model, quantum rotor model, Bose–Hubbard model, and Hubbard model. We present a model-independent structure that governs the correlation inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. To be precise, this general formulation was established by Kelly and Sherman [32], see also [13, 24, 25].

  2. The problem of the quantum Heisenberg model is still open, see, e.g., [28].

  3. This symbol was introduced by Miura [42]. Bratteli, Kishimoto and Robinson studied the commutative cases in [7, 35].

  4. From this fact, we understand that reflection positivity is closely related to the notion of positivity preservation discussed in Sect. 2.

  5. This fact can be proven by the Perron–Frobenius–Faris theorem (Theorem 8.4).

  6. This unitary operator is well-known [34, 43].

  7. We used the assumption \(\mu _x\ge 0\) here.

  8. Indeed, we have \( \mathfrak {K}_{\Lambda }=\Big ( \bigotimes _{x\in \Lambda } \mathbb {C}^2 \Big )\otimes \Big ( \bigotimes _{x\in \Lambda } \mathbb {C}^2 \Big ) \cong \bigotimes _{x\in \Lambda } (\mathbb {C}^2\otimes \mathbb {C}^2) \cong \bigotimes _{x\in \Lambda }\mathfrak {K}. \)

  9. Here we have used the assumptions \(\mu _x\ge 0\) and \(\lambda _x\ge 0\).

  10. The precise definition of \(-i \frac{\partial }{\partial \theta }\) is given by

    $$\begin{aligned} \mathrm {dom}\Big (-i \frac{\partial }{\partial \theta }\Big )&= \{f\in C^1(\mathbb {T})\, |\, f(-\pi )=f(\pi )\},\\ -i \frac{\partial }{\partial \theta } f&=-i f^{'}\, \ \ \forall f\in \mathrm {dom}\Big (- i \frac{\partial }{\partial \theta }\Big ). \end{aligned}$$

    Then \( -i \frac{\partial }{\partial \theta } \) is essentially self-adjoint. We still denote its closure by the same symbol.

  11. To be precise, \(\mathcal {F}\) is a unitary operator given by

    $$\begin{aligned} (\mathcal {F}f)(\mathbf {n})=(2\pi )^{-|\Lambda |/2}\int _{\mathbb {T}^{\Lambda }} f({\varvec{\theta }})\, \mathrm {e}^{-i {\varvec{\theta }}\cdot \mathbf {n}} d{\varvec{\theta }}\ \ \forall f\in \mathfrak {H}. \end{aligned}$$
    (5.20)
  12. To be precise, \(\overline{+}=-\) and \(\overline{-}=+\).

  13. This fact follows from an application of the Perron–Frobenius–Faris (Theorem 8.4).

  14. This assumption is needed in order to guarantee that \(\mathrm {e}^{-\beta H}\) is a trace class operator.

  15. \(\langle \psi |X|\phi \rangle :=\langle \psi |X\phi \rangle \).

  16. All results in this section can be extended to a more general Coulomb interaction of the form \(\sum _{x, y\in \Lambda }U_{xy}(n_{x\uparrow }-\frac{1}{2})(n_{y\downarrow }-\frac{1}{2})\), where \(U_{xy}\) is real and positive semidefinite.

  17. This assumption can be relaxed [44].

  18. Even when we show the second Griffiths inequality, the properties (\(\mathfrak {P}\) i) and (\(\mathfrak {P}\) ii) are essential for our proof. Namely, (\(\mathfrak {P}\) i) and (\(\mathfrak {P}\) ii) still hold true for the extended Hamiltonian acting in the doubled Hilbert space \(\mathfrak {H}\otimes \mathfrak {H}\), see Sects. 27.

  19. In the case where \(N=\infty \), the symbol \(\{1, \dots , N\} \) denotes \(\mathbb {N}\).

References

  1. Aizenman, M., Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: Bose–Einstein quantum phase transition in an optical lattice model. Phys. Rev. A 70, 023612 (2004)

    Article  ADS  MATH  Google Scholar 

  2. Albert, C., Ferrari, L., Fröhlich, J., Schlein, B.: Magnetism and the Weiss exchange field—a theoretical analysis motivated by recent experiments. J. Stat. Phys. 125, 77–124 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Biskup, M.: Reflection positivity and phase transitions in lattice spin models. In: Methods of contemporary mathematical statistical physics, pp. 1-86. Lecture Notes in Math., 1970. Springer, Berlin (2009)

  4. Björnberg, J.E., Grimmett, G.R.: The phase transition of the quantum Ising model is sharp. J. Stat. Phys. 136, 231–273 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bös, W.: Direct integrals of selfdual cones and standard forms of von Neumann algebras. Invent. Math. 37, 241–251 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bricmont, J., Fontaine, J.-R., Lebowitz, J.L., Lieb, E.H., Spencer, T.: Lattice systems with a continuous symmetry. III. Low temperature asymptotic expansion for the plane rotator model. Commun. Math. Phys. 78, 545–566 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bratteli, O., Kishimoto, A., Robinson, D.W.: Positivity and monotonicity properties of \(C_0\) -semigroups I. Commun. Math. Phys. 75, 67–84 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Contucci, P., Lebowitz, J.L.: Correlation inequalities for quantum spin systems with quenched centered disorder. J. Math. Phys. 37, 5458–5475 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crawford, N., Ioffe, D.: Random current representation for transverse field Ising model. Commun. Math. Phys. 296, 447–474 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Driessler, W., Landau, L., Perez, J.F.: Estimates of critical lengths and critical temperatures for classical and quantum lattice systems. J. Stat. Phys. 20, 123–162 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  11. Dyson, F.J., Lieb, E.H., Simon, B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  12. Faris, W.G.: Invariant cones and uniqueness of the ground state for fermion systems. J. Math. Phys. 13, 1285–1290 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22, 89–103 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Frank, R.L., Lieb, E.H.: Possible lattice distortions in the Hubbard model for graphene. Phys. Rev. Lett. 107, 066801 (2011)

    Article  ADS  Google Scholar 

  15. Freericks, J.K., Lieb, E.H.: Ground state of a general electron-phonon Hamiltonian is a spin singlet. Phys. Rev. B 51, 2812–2821 (1995)

    Article  ADS  Google Scholar 

  16. Fröhlich, J.: On the infrared problem in a model of scalar electrons and massless, scalar bosons. Ann. Inst. H. Poincaré Sect. A 19, 1–103 (1973)

    MathSciNet  MATH  Google Scholar 

  17. Fröhlich, J., Israel, R., Lieb, E.H., Simon, B.: Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys. 62, 1–34 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  18. Fröhlich, J., Simon, B., Spencer, T.: Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys. 50, 79–95 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  19. Gallavotti, G.: A proof of the Griffiths inequalities for the \(XY\) model. Stud. Appl. Math. 50, 89–92 (1971)

    Article  MathSciNet  Google Scholar 

  20. Ginibre, J.: General formulation of Griffiths’ inequalities. Commun. Math. Phys. 16, 310–328 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  21. Glimm, J., Jaffe, A., Spencer, T.: Phase transitions for \({\varphi }^4_2\) quantum fields. Commun. Math. Phys. 45, 203–216 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Glimm, J., Jaffe, A.: Quantum Physics. A Functional Integral Point of View, 2nd edn. Springer, New York (1987)

    MATH  Google Scholar 

  23. Griffiths, R.B.: Correlations in Ising ferromagnets I. J. Math. Phys. 8, 484–488 (1967)

    Article  ADS  Google Scholar 

  24. Griffiths, R.B.: Correlations in Ising ferromagnets II. J. Math. Phys. 8, 478–483 (1967)

    Article  ADS  Google Scholar 

  25. Griffiths, R.B.: Rigorous results for Ising ferromagnets of arbitrary spin. J. Math. Phys. 10, 1559–1565 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  26. Gross, L.: Existence and uniqueness of physical ground states. J. Funct. Anal. 10, 52–109 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  27. Heilmann, O.J., Lieb, E.H.: Lattice models for liquid crystals. J. Stat. Phys. 20, 679–693 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  28. Hurst, C.A., Sherman, S.: Griffiths’ theorems for the ferromagnetic Heisenberg model. Phys. Rev. Lett. 22, 1357–1358 (1969)

    Article  ADS  Google Scholar 

  29. Lenz, W.: Beitrag zum verständnis der magnetischen Erscheinungen in festen körpern. Phys. Z. 21, 613–615 (1920)

    Google Scholar 

  30. Jaffe, A., Pedrocchi, F.L.: Reflection positivity for Majoranas. Ann. Henri Poincaré 16, 189–203 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Jaffe, A., Pedrocchi, F.L.: Reflection positivity for parafermions. Commun. Math. Phys. 337, 455–472 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Kelly, D.G., Sherman, S.: General Griffiths’ inequalities on correlations in Ising ferromagnets. J. Math. Phys. 9, 466–484 (1968)

    Article  ADS  Google Scholar 

  33. Kennedy, T., Lieb, E.H., Shastry, B.S.: Existence of Neel order in some spin-1/2 Heisenberg antiferromagnets. J. Stat. Phys. 53, 1019–1030 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  34. Kirkwood, J.R., Thomas, L.E.: Expansions and phase transitions for the ground state of quantum Ising lattice systems. Commun. Math. Phys. 88, 569–580 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  35. Kishimoto, A., Robinson, D.W.: Positivity and monotonicity properties of \(C_0\) -semigroups II. Commun. Math. Phys. 75, 85–101 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Klein, A., Perez, J.F.: Localization in the ground state of a disordered array of quantum rotators. Commun. Math. Phys. 147, 241–252 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Lieb, E.H., Mattis, D.C.: Ordering energy levels of interacting spin systems. J. Math. Phys. 3, 749–751 (1962)

    Article  ADS  MATH  Google Scholar 

  38. Lieb, E.H.: Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  39. Lieb, E.H., Nachtergaele, B.: Stability of the Peierls instability for ring-shaped molecules. Phys. Rev. B 51, 4777–4791 (1995)

    Article  ADS  MATH  Google Scholar 

  40. Lieb, E.H., Schupp, P.: Ground state properties of a fully frustrated quantum spin system. Phys. Rev. Lett. 83, 5362–5365 (1999)

    Article  ADS  Google Scholar 

  41. Lindbald, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  42. Miura, Y.: On order of operators preserving selfdual cones in standard forms. Far East J. Math. Sci. 8, 1–9 (2003)

    MathSciNet  MATH  Google Scholar 

  43. Miyao, T.: Nondegeneracy of ground states in nonrelativistic quantum field theory. J. Oper. Theory 64, 207–241 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Miyao, T.: Self-dual cone analysis in condensed matter physics. Rev. Math. Phys. 23, 749–822 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Miyao, T.: Ground state properties of the SSH model. J. Stat. Phys. 149, 519–550 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Miyao, T.: Monotonicity of the polaron energy II: general theory of operator monotonicity. J. Stat. Phys. 153, 70–92 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Miyao, T.: Monotonicity of the polaron energy. Rep. Math. Phys. 74, 379–398 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Miyao, T.: Rigorous results concerning the Holstein–Hubbard model. Ann. Henri Poicare. (to appear). arXiv:1402.5202

  49. Miyao, T.: Upper bounds on the charge susceptibility of many-electron systems coupled to the quantized radiation field. Lett. Math. Phys. 105, 1119–1133 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Nagaoka, Y.: Ferromagnetism in a narrow, almost half-filled \(s\) band. Phys. Rev. 147, 392–405 (1966)

    Article  ADS  Google Scholar 

  51. Osterwalder, K., Schrader, R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83–112 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Osterwalder, K., Schrader, R.: Axioms for Euclidean Green’s functions. II. With an appendix by Stephen Summers. Commun. Math. Phys. 42, 281–305 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Percus, J.K.: Correlation inequalities for Ising spin lattices. Commun. Math. Phys. 40, 283–308 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  54. Sachdev, S.: Quantum Phase Transitions, 2nd edn. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  55. Shen, S.H.: Strongly correlated electron systems: spin-reflection positivity and some rigorous results. Int. J. Mod. Phys. B 12, 709 (1998)

    Article  ADS  Google Scholar 

  56. Sigrist, M., Tsunetsugu, H., Ueda, K.: Rigorous results for the one-electron Kondo-lattice model. Phys. Rev. Lett. 67, 2211–2214 (1991)

    Article  ADS  Google Scholar 

  57. Tian, G.-S.: Lieb’s spin-reflection positivity methods and its applications to strongly correlated electron systems. J. Stat. Phys. 116, 629–680 (2004)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by KAKENHI (20554421). I would be grateful to the anonymous referees for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadahiro Miyao.

Appendix: Fundamental Properties of Operator Inequalities Associated with Self-Dual Cones

Appendix: Fundamental Properties of Operator Inequalities Associated with Self-Dual Cones

1.1 Positivity Preserving Operators

In this appendix, we review useful operator inequalities studied in [43].

Let \(\mathfrak {H}\) be a complex Hilbert space and \(\mathfrak {P}\) be a self-dual cone in \(\mathfrak {H}\).

Proposition A.1

Let \(\{x_n\}_{n\in \mathbb {N}}\) be a CONS of \(\mathfrak {H}\). Assume that \(x_n\in \mathfrak {P}\) for all \(n\in \mathbb {N}\). Assume that \(A\unrhd 0\) w.r.t. \(\mathfrak {P}\). Then we have \(\mathrm {Tr}[A]\ge 0\).

Proof

Since \(x_n\in \mathfrak {P}\), we see that \(\langle x_n|Ax_n\rangle \ge 0\) for all \(n\in \mathbb {N}\). Thus, we arrive at \(\mathrm {Tr}[A]=\sum _{n=1}^{\infty }\langle x_n|Ax_n\rangle \ge 0\). \(\Box \)

Proposition A.2

Let \(N=\dim \mathfrak {H}\in \mathbb {N}\cup \{\infty \}\). Let \(\{x_n\}_{n=1}^N\) be a CONS of \(\mathfrak {H}\). Assume that \(x_n\in \mathfrak {P}\) for all \(n\in \{1,\dots , N\}\).Footnote 19 Then the following (i) and (ii) are equivalent.

  1. (i)

    \(A\unrhd 0\) w.r.t. \(\mathfrak {P}\).

  2. (ii)

    \(A_{mn}=\langle x_m|Ax_n\rangle \ge 0\) for all \(m,n \in \{1, \dots , N\}\).

Proof

(i) \(\Longrightarrow \) (ii): Trivial.

(ii) \(\Longrightarrow \) (i): Let \(w, z\in \mathfrak {P}\). Then we can write

$$\begin{aligned} w&=\sum _{n=1}^N c_n x_n,\ \ \ c_n=\langle w|x_n\rangle ,\end{aligned}$$
(A.1)
$$\begin{aligned} z&=\sum _{n=1}^N d_n x_n,\ \ \ d_n=\langle z|x_n\rangle . \end{aligned}$$
(A.2)

Since \(w,z\ge 0\) w.r.t. \(\mathfrak {P}\), we see that \(c_n\ge 0, d_n \ge 0\) for all \(n\in \mathbb {N}\). Thus, we have

$$\begin{aligned} \langle w|Az\rangle =\sum _{m,n=1}^N c_m d_n A_{mn} \ge 0. \end{aligned}$$
(A.3)

Since \(\mathfrak {P}\) is self-dual, we have \(Az\ge 0\) w.r.t. \(\mathfrak {P}\). Thus, we conclude that \(A\unrhd 0\) w.r.t. \(\mathfrak {P}\). \(\square \)

Proposition A.3

Assume that \(A \unrhd 0\) w.r.t. \(\mathfrak {P}\). Then \(\mathrm {e}^{\beta A} \unrhd 0\) w.r.t. \(\mathfrak {P}\) for all \(\beta \ge 0\).

Proof

Since \(A \unrhd 0\) w.r.t. \(\mathfrak {P}\), it holds that \(A^n\unrhd 0\) w.r.t. \(\mathfrak {P}\) for all \(n\in \mathbb {N}\). Thus ,

$$\begin{aligned} \mathrm {e}^{\beta A} =\sum _{n\ge 0}\underbrace{\frac{\beta ^n}{n!}}_{\ge 0} \underbrace{A^n}_{\unrhd 0} \unrhd 0\ \ \ \text{ w.r.t. } \mathfrak {P}\,\mathrm{for\, all}\, \beta \ge 0. \end{aligned}$$
(A.4)

\(\square \)

Proposition A.4

Assume that \(\mathrm {e}^{\beta A} \unrhd 0\) and \(\mathrm {e}^{\beta B} \unrhd 0\) w.r.t. \(\mathfrak {P}\) for all \(\beta \ge 0\). Then \(\mathrm {e}^{\beta (A+B)} \unrhd 0\) w.r.t. \(\mathfrak {P}\) for all \(\beta \ge 0\).

Proof

Note that \(\mathrm {e}^{\beta A} \mathrm {e}^{\beta B} \unrhd 0\) w.r.t. \(\mathfrak {P}\) for all \(\beta \ge 0\). Thus, \((\mathrm {e}^{\beta A/n}\mathrm {e}^{\beta B/n})^n \unrhd 0\) w.r.t. \(\mathfrak {P}\) for all \(\beta \ge 0\) and \(n\in \mathbb {N}\). By the Trotter–Kato product formula, we obtain the desired assertion. \(\square \)

The following proposition is repeatedly used in this study.

Proposition A.5

Assume the following:

  1. (i)

    \(\mathrm {e}^{\beta A} \unrhd 0\) w.r.t. \(\mathfrak {P}\) for all \(\beta \ge 0\).

  2. (ii)

    \(B\unrhd 0\) w.r.t. \(\mathfrak {P}\).

Then we have \(\mathrm {e}^{\beta (A+B)} \unrhd 0\) w.r.t. \(\mathfrak {P}\) for all \(\beta \ge 0\).

Proof

By (ii) and Proposition A.3, it holds that \(\mathrm {e}^{\beta B} \unrhd 0\) w.r.t.  \(\mathfrak {P}\)  for  all \(\beta \, \ge 0\). Thus, applying Proposition A.4, we conclude the assertion. \(\square \)

Proposition A.6

Let A be a positive self-adjoint operator. Assume that \(\mathrm {e}^{-\beta A} \unrhd 0\) w.r.t. \(\mathfrak {P}\) for all \(\beta \ge 0\). Assume that \(E=\inf \mathrm {spec}(A)\) is an eigenvalue of A. Then there exists a nonzero vector \(x\in \ker (A-E)\) such that \(x\ge 0\) w.r.t. \(\mathfrak {P}\).

Proof

Step 1 Let J be an antilinear involution given by Proposition A.7 below. Set \(\mathfrak {H}_J=\{x\in \mathfrak {H}\, |\, Jx=x\}\). We will show that \(\ker (A-E)\cap \mathfrak {H}_J\ne \{0\}\).

To see this, let \(x\in \ker (A-E)\). Then we have the decomposition \(x=\mathfrak {R}x+i \mathfrak {I}x\) with \(\mathfrak {R}x=\frac{1}{2}(\mathbbm {1}+J)x\) and \(\mathfrak {I}x =\frac{1}{2i}(\mathbbm {1}-J)x \). Clearly , \(\mathfrak {R}x, \mathfrak {I}x\in \mathfrak {H}_J\). Since \(x\ne 0\), it holds that \(\mathfrak {R}x\ne 0\) or \(\mathfrak {I}x\ne 0\). Since \(\mathrm {e}^{-\beta A}\unrhd 0\) w.r.t. \(\mathfrak {P}\) for all \(\beta \ge 0\), A commutes with J. Thus, \(\mathfrak {R}x, \mathfrak {I}x\in \ker (A-E)\cap \mathfrak {H}_J\).

Step 2 Take \(x\in \ker (A-E)\cap \mathfrak {H}_J\). By Proposition A.7 (iii), we have a unique decomposition \(x=x_+-x_-\), where \(x_{\pm }\in \mathfrak {P}\) and \(\langle x_+| x_-\rangle =0\). Let \(|x|=x_++x_-\). Then we have

$$\begin{aligned} \mathrm {e}^{-\beta E}\Vert x\Vert =\langle x|\mathrm {e}^{-\beta A}x\rangle \le \langle |x||\mathrm {e}^{-\beta A}|x|\rangle \le \mathrm {e}^{-\beta E}\underbrace{\Vert |x|\Vert }_{=\Vert x\Vert }. \end{aligned}$$
(A.5)

Thus, \(|x|\in \ker (A-E)\). Clearly, \(|x|\ge 0\) w.r.t. \(\mathfrak {P}\). \(\square \)

Proposition A.7

A self-dual cone \(\mathfrak {P}\) has the following properties:

  1. (i)

    \(\mathfrak {P}\cap (-\mathfrak {P})=\{0\}\).

  2. (ii)

    There exists a unique antilinear involution J in \(\mathfrak {H}\) such that \(Jx=x\) for all \(x\in \mathfrak {P}\).

  3. (iii)

    Each element \(x\in \mathfrak {H}\) with \(Jx=x\) has a unique decomposition \(x=x_+-x_-\) where \(x_+,x_-\in \mathfrak {P}\) and \(\langle x_+| x_-\rangle =0\).

  4. (iv)

    \(\mathfrak {H}\) is linearly spanned by \(\mathfrak {P}\).

Proof

See, e.g., [5]. \(\square \)

1.2 Reflection Positive Operators

To apply Theorem 3.11, it is crucial to show that \( \mathrm {e}^{-\beta H} \succeq 0\) w.r.t. \(\mathscr {L}^2(\mathfrak {H})_+\) for all \(\beta >0\). The following proposition is often useful in proving this condition:

Proposition A.8

Let \(H_0\) be a self-adjoint operator on \(\mathscr {L}^2(\mathfrak {H})\) bounded from below. Let \(V \in \mathscr {B}(\mathscr {L}^2(\mathfrak {H}))\) be self-adjoint. Assume the following:

  1. (i)

    \(\mathrm {e}^{-\beta H_0} \succeq 0\) w.r.t. \(\mathscr {L}^2(\mathfrak {H})_+\) for all \(\beta \ge 0\).

  2. (ii)

    \(V\succeq 0\) w.r.t. \(\mathscr {L}^2(\mathfrak {H})_+\).

Let \(H=H_0-V\). We have \(\mathrm {e}^{-\beta H} \succeq 0\) w.r.t. \(\mathscr {L}^2(\mathfrak {H})_+\) for all \(\beta \ge 0\).

Proof

Note that

$$\begin{aligned} \mathrm {e}^{\beta V}=\sum _{n\ge 0} \underbrace{\frac{\beta ^n}{n!}}_{\ge 0} \underbrace{V^n}_{\succeq 0} \succeq 0\ \ \ \text{ w.r.t. } \mathscr {L}^2(\mathfrak {H})_+. \end{aligned}$$
(A.6)

Thus, by the Trotter–Kato product formula, we obtain

$$\begin{aligned} \mathrm {e}^{-\beta H}=\mathrm {s}-\displaystyle \lim _{n\rightarrow \infty }\Big ( \underbrace{\mathrm {e}^{-\beta H_0/n}}_{\succeq 0} \underbrace{ \mathrm {e}^{\beta V/n}}_{\succeq 0} \Big )^n\succeq 0\ \ \ \text{ w.r.t. } \mathscr {L}^2(\mathfrak {H})_+ \,\mathrm{for \, all}\, \beta \ge 0, \end{aligned}$$
(A.7)

where \(\mathrm {s}-\displaystyle \lim _{n\rightarrow \infty }\) means the strong limit. \(\square \)

Corollary A.9

Let \(H_0=\mathcal {L}(A)+\mathcal {R}(A)\), where A is self-adjoint and bounded from below. Let

$$\begin{aligned} V=\sum _{j=1}^{\infty }\mathcal {L}(B_j) \mathcal {R}(B_j), \end{aligned}$$
(A.8)

where \(B_j\in \mathscr {B}(\mathfrak {H})\) is self-adjoint and the right hand side of (A.8) is a weak convergent sum. Define \(H=H_0-V\). Then we obtain \( \mathrm {e}^{ -\beta H} \succeq 0 \) w.r.t.  \(\mathscr {L}^2(\mathfrak {H})_+\) for all \(\beta \ge 0\).

Proof

Observe that \(\mathrm {e}^{-\beta H_0}=\mathcal {L}(\mathrm {e}^{-\beta A}) \mathcal {R}(\mathrm {e}^{-\beta A})\succeq 0\) w.r.t. \(\mathscr {L}^2(\mathfrak {H})_+\) for all \(\beta \ge 0\). Since \(V\succeq 0\) w.r.t. \(\mathscr {L}^2(\mathfrak {H})_+\), we obtain the desired assertion by Proposition A.8. \(\square \)

The following lemma will be often useful:

Lemma A.10

Let \(A_j,\ j=1, \dots , N\) be a bounded operator acting in \(\mathfrak {H}\). Let \(M=(M_{ij})\) be a positive semidefinite \(N\times N\) matrix. Then we have

$$\begin{aligned} \sum _{i, j=1}^N M_{ij} \mathcal {L}(A_i^*) \mathcal {R}(A_j) \succeq 0\ \ \text{ w.r.t. } \mathscr {L}^2(\mathfrak {H})_+. \end{aligned}$$
(A.9)

Proof

There exists a unitary matrix U such that \(M=U^* DU\), where \(D=\mathrm {diag}(\lambda _j)\) is a diagonal matrix with \(\lambda _j\ge 0\). Set \(\tilde{A}_i=\sum _{j=1}^N U_{ij} A_j\). Then we see

$$\begin{aligned} \text{ LHS } \text{ of } \text{(A.9) }=\sum _{j=1}^N \lambda _{j} \mathcal {L}(\tilde{A}_j^*) \mathcal {R}(\tilde{A}_j) \succeq 0\ \ \text{ w.r.t. } \mathscr {L}^2(\mathfrak {H})_+. \end{aligned}$$
(A.10)

This completes the proof. \(\Box \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyao, T. Quantum Griffiths Inequalities. J Stat Phys 164, 255–303 (2016). https://doi.org/10.1007/s10955-016-1546-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1546-4

Keywords

Navigation