Skip to main content
Log in

Exact Partition Functions for the q-State Potts Model with a Generalized Magnetic Field on Lattice Strip Graphs

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We calculate the partition function of the q-state Potts model on arbitrary-length cyclic ladder graphs of the square and triangular lattices, with a generalized external magnetic field that favors or disfavors a subset of spin values \(\{1,\ldots ,s\}\) with \(s \le q\). For the case of antiferromagnet spin–spin coupling, these provide exactly solved models that exhibit an onset of frustration and competing interactions in the context of a novel type of tensor-product \(S_s \otimes S_{q-s}\) global symmetry, where \(S_s\) is the permutation group on s objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shrock, R.: Exact Potts model partition functions for ladder graphs. Physica A 283, 388–446 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  2. Chang, S.-C., Shrock, R.: Exact Potts model partition functions on strips of the triangular lattice. Physica A 286, 189–238 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Chang, S.-C., Shrock, R.: Structure of the partition function and transfer matrices for the Potts model in a magnetic field on lattice strips. J. Stat. Phys. 137, 667–699 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. Chang, S.-C., Shrock, R.: Weighted graph colorings. J. Stat. Phys. 138, 496–542 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Wreszinski, W.F., Salinas, S.R.A.: Disorder and Competition in Soluble Lattice Models. World Scientific, Singapore (1993)

    Book  Google Scholar 

  6. Wu, F.Y.: Percolation and the Potts model. J. Stat. Phys. 18, 115–123 (1978)

    Article  ADS  Google Scholar 

  7. Wu, F.Y.: The Potts model. Rev. Mod. Phys. 54, 235–268 (1982)

    Article  ADS  Google Scholar 

  8. Chang, S.-C., Shrock, R.: Some exact results on the Potts model partition function in a magnetic field. J. Phys. A 42, 385004 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. Shrock, R., Xu, Y.: Weighted set graph colorings. J. Stat. Phys. 139, 27–61 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Shrock, R., Xu, Y.: Exact results on Potts model partition functions in a generalized external field and weighted-set graph colorings. J. Stat. Phys. 141, 909–939 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Tutte, W.T.: A ring in graph theory. Proc. Camb. Philos. Soc. 43, 26–40 (1947)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Tutte, W.T.: On dichromatic polynomials. J. Combin. Theory 1, 301–320 (1967)

    Article  MathSciNet  Google Scholar 

  13. Biggs, N.: Algebraic Graph Theory. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  14. Bollobás, B.: Modern Graph Theory. Springer, New York (1998)

    Book  MATH  Google Scholar 

  15. Chang, S.-C., Shrock, R.: Exact Potts model partition functions on wider arbitrary-length strips of the square lattice. Physica A 296, 234–288 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Shrock, R., Tsai, S.-H.: Complex-temperature phase diagrams of 1D spin models with next-nearest-neighbor couplings. Phys. Rev. E 55, 5184–5193 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was partly supported by the Taiwan Ministry of Science and Technology Grant MOST 103-2918-I-006-016 (S.-C.C.) and by the U.S. National Science Foundation Grant No. NSF-PHY-13-16617 (R.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Shrock.

Additional information

Shu-Chiuan Chang is on sabbatical leave with the C. N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794.

Appendices

Appendix 1: \(Z(sq,2 \times m,cyc.,q,v)\)

We review here the result for the partition function \(Z(sq,2 \times m,cyc.,q,v)\) of the cyclic square-lattice ladder graph of length \(L_x=m\) vertices presented in [1]. We include this in connection with our discussion in the text showing how our new result for \(Z(sq,2 \times m,cyc.,q,s,v,w)\) reduces to \(Z(sq,2 \times m,cyc.,q,v)\) in the zero-field case \(w=1\). This partition function has the form of

$$\begin{aligned} Z(sq,L_y \times m,cyc.,q,v) = \sum _{d=0}^{L_y} c^{(d)} \sum _{j=1}^{n_Z(L_y,d)} (\lambda _{sq,L_y,d,j})^m , \end{aligned}$$
(8.1)

with \(L_y=2\), where \(n_Z(2,0)=2\), \(n_Z(2,1)=3\), \(n_Z(2,2)=1\), and the coefficients \(c^{(d)}\) are given in Eq. (3.2), so

$$\begin{aligned} c^{(0)}=1, \quad c^{(1)}=q-1, \quad c^{(2)}=q^2-3q+1. \end{aligned}$$
(8.2)

As is evident in Eq. (8.1), to distinguish the \(\lambda _{sq,2,d,j}\)s in the zero-field partition function \(Z(sq,2 \times m,q,v)\) from the \(\lambda _{Z,sq,2,d,j}\) in the field-dependent partition function \(Z(sq,2\times m,q,s,v,w)\), we suppress the subscript Z in the former. Explicitly,

$$\begin{aligned} Z(sq,2 \times m,cyc.,q,v)= & {} (\lambda _{sq,2,0,+})^m+(\lambda _{sq,2,0,-})^m \nonumber \\&+ \, c^{(1)}\Big [ (\lambda _{sq,2,1,1})^m + (\lambda _{sq,2,1,+})^m + (\lambda _{sq,2,1,-})^m \Big ]\nonumber \\&+\, c^{(2)} (\lambda _{sq,2,2})^m , \end{aligned}$$
(8.3)

where (in order of decreasing d) \(\lambda _{sq,2,2}=v^2\),

$$\begin{aligned} \lambda _{sq,2,1,1}=v(q+v) , \end{aligned}$$
(8.4)
$$\begin{aligned} \lambda _{sq,2,1,(2,3)}\equiv & {} \lambda _{sq,2,1,\pm }\nonumber \\= & {} \frac{v}{2}\Big [ q+v(v+4) \pm (v^4+4v^3+12v^2-2qv^2+4qv+q^2)^{1/2} \Big ] ,\quad \quad \end{aligned}$$
(8.5)

and

$$\begin{aligned} \lambda _{sq,2,0,(1,2)} \equiv \lambda _{sq,2,0,\pm } = \frac{1}{2}(A_{sqd0} \pm \sqrt{R_{sqd0}} \ ) , \end{aligned}$$
(8.6)

where

$$\begin{aligned} A_{sqd0}=v^3+4v^2+3qv+q^2 \end{aligned}$$
(8.7)

and

$$\begin{aligned} R_{sqd0}=v^6+4v^5-2qv^4-2q^2v^3+12v^4+16qv^3+13q^2v^2+6q^3v+q^4. \end{aligned}$$
(8.8)

The reader is referred to [2] for our corresponding solution for the partition function \(Z(tri,2 \times m,cyc.,q,v)\) of the cyclic triangular-lattice ladder graph of arbitrary length.

Appendix 2: \(T_{Z,sq,2,0}\)

Five of the \(s^2+2s+2\) \(\lambda _{Z,sq,2,0,j}\) terms, each with multiplicity 1, are determined as the roots of a quintic equation which is the characteristic polynomial of the transfer matrix \(T_{Z,sq,L_y,d}\) with \(L_y=2\), \(d=0\), and the following entries:

$$\begin{aligned} (T_{Z,sq,2,0})_{1,1}= & {} {\tilde{q}}^2 + 3v({\tilde{q}} + v)\end{aligned}$$
(9.1)
$$\begin{aligned} (T_{Z,sq,2,0})_{1,2}= & {} 2s({\tilde{q}} + v)w\end{aligned}$$
(9.2)
$$\begin{aligned} (T_{Z,sq,2,0})_{1,3}= & {} s(v+1)w^2\end{aligned}$$
(9.3)
$$\begin{aligned} (T_{Z,sq,2,0})_{1,4}= & {} s(s-1)w^2\end{aligned}$$
(9.4)
$$\begin{aligned} (T_{Z,sq,2,0})_{1,5}= & {} ({\tilde{q}} + 2v)(v+1)\end{aligned}$$
(9.5)
$$\begin{aligned} (T_{Z,sq,2,0})_{2,1}= & {} {\tilde{q}}^{\ 2} + v(2{\tilde{q}} + v) \end{aligned}$$
(9.6)
$$\begin{aligned} (T_{Z,sq,2,0})_{2,2}= & {} w[2s{\tilde{q}} + v(q+v)] \end{aligned}$$
(9.7)
$$\begin{aligned} (T_{Z,sq,2,0})_{2,3}= & {} (v+1)(v+s)w^2\end{aligned}$$
(9.8)
$$\begin{aligned} (T_{Z,sq,2,0})_{2,4}= & {} (v+s)(s-1)w^2\end{aligned}$$
(9.9)
$$\begin{aligned} (T_{Z,sq,2,0})_{2,5}= & {} ({\tilde{q}} + v)(v+1)\end{aligned}$$
(9.10)
$$\begin{aligned} (T_{Z,sq,2,0})_{3,1}= & {} (T_{Z,sq,2,0})_{4,1} = {\tilde{q}} ( {\tilde{q}} + v)\end{aligned}$$
(9.11)
$$\begin{aligned} (T_{Z,sq,2,0})_{3,2}= & {} (T_{Z,sq,2,0})_{4,2} = 2{\tilde{q}} (v+s)w\end{aligned}$$
(9.12)
$$\begin{aligned} (T_{Z,sq,2,0})_{3,3}= & {} (v+1)(v^2+2v+s)w^2\end{aligned}$$
(9.13)
$$\begin{aligned} (T_{Z,sq,2,0})_{3,4}= & {} (2v+s)(s-1)w^2\end{aligned}$$
(9.14)
$$\begin{aligned} (T_{Z,sq,2,0})_{3,5}= & {} (T_{Z,sq,2,0})_{4,5} = {\tilde{q}} (v+1)\end{aligned}$$
(9.15)
$$\begin{aligned} (T_{Z,sq,2,0})_{4,3}= & {} (v+1)(2v+s)w^2\end{aligned}$$
(9.16)
$$\begin{aligned} (T_{Z,sq,2,0})_{4,4}= & {} [(s+v)^2-s-2v]w^2\end{aligned}$$
(9.17)
$$\begin{aligned} (T_{Z,sq,2,0})_{5,1}= & {} v^3\end{aligned}$$
(9.18)
$$\begin{aligned} (T_{Z,sq,2,0})_{5,j}= & {} 0 \quad \mathrm{for} \ 2 \le j \le 4 \end{aligned}$$
(9.19)
$$\begin{aligned} (T_{Z,sq,2,0})_{5,5}= & {} v^2(v+1) \end{aligned}$$
(9.20)

Appendix 3: Matrices \(T_{Z,tri,2,d}\) for \(d=1\), \(d=0\)

1.1 \(d=1\)

Five of the \(s^2+2s+2\) \(\lambda _{Z,tri,2,1,j}\) terms, each with multiplicity 1, are determined as the roots of a quintic equation which is the characteristic polynomial of the matrix \(T_{Z,tri,L_y,d}\) with \(L_y=2\), \(d=1\), and the following entries:

$$\begin{aligned} (T_{Z,tri,2,1})_{1,1}= & {} v {\tilde{q}} + 2v^2\end{aligned}$$
(10.1)
$$\begin{aligned} (T_{Z,tri,2,1})_{1,2}= & {} swv\end{aligned}$$
(10.2)
$$\begin{aligned} (T_{Z,tri,2,1})_{1,3}= & {} (T_{Z,tri,2,1})_{2,3} = v^2\end{aligned}$$
(10.3)
$$\begin{aligned} (T_{Z,tri,2,1})_{1,4}= & {} (T_{Z,tri,2,1})_{2,4} = 0\end{aligned}$$
(10.4)
$$\begin{aligned} (T_{Z,tri,2,1})_{1,5}= & {} (T_{Z,tri,2,1})_{2,5} = v(1+v)\end{aligned}$$
(10.5)
$$\begin{aligned} (T_{Z,tri,2,1})_{2,1}= & {} v {\tilde{q}} + v^2\end{aligned}$$
(10.6)
$$\begin{aligned} (T_{Z,tri,2,1})_{2,2}= & {} wv(v+s)\end{aligned}$$
(10.7)
$$\begin{aligned} (T_{Z,tri,2,1})_{3,1}= & {} (T_{Z,tri,2,1})_{4,1} = v {\tilde{q}} + 3v^2 + v^3\end{aligned}$$
(10.8)
$$\begin{aligned} (T_{Z,tri,2,1})_{3,2}= & {} (T_{Z,tri,2,1})_{4,2} = swv\end{aligned}$$
(10.9)
$$\begin{aligned} (T_{Z,tri,2,1})_{3,3}= & {} v {\tilde{q}} + 4v^2 + v^3\end{aligned}$$
(10.10)
$$\begin{aligned} (T_{Z,tri,2,1})_{3,4}= & {} swv\end{aligned}$$
(10.11)
$$\begin{aligned} (T_{Z,tri,2,1})_{3,5}= & {} (T_{Z,tri,2,1})_{4,5} = v(1+v)(2+v)\end{aligned}$$
(10.12)
$$\begin{aligned} (T_{Z,tri,2,1})_{4,3}= & {} v {\tilde{q}} + 3v^2 + v^3\end{aligned}$$
(10.13)
$$\begin{aligned} (T_{Z,tri,2,1})_{4,4}= & {} wv(v+s)\end{aligned}$$
(10.14)
$$\begin{aligned} (T_{Z,tri,2,1})_{5,1}= & {} v^2 {\tilde{q}} + 3v^3 + v^4\end{aligned}$$
(10.15)
$$\begin{aligned} (T_{Z,tri,2,1})_{5,2}= & {} swv^2\end{aligned}$$
(10.16)
$$\begin{aligned} (T_{Z,tri,2,1})_{5,3}= & {} 3v^3 + v^4\end{aligned}$$
(10.17)
$$\begin{aligned} (T_{Z,tri,2,1})_{5,4}= & {} 0\end{aligned}$$
(10.18)
$$\begin{aligned} (T_{Z,tri,2,1})_{5,5}= & {} v^2(1+v)(2+v) \end{aligned}$$
(10.19)

1.2 \(d=0\)

Five of the \(\lambda _{Z,tri,L_y,d,j}\) with \(L_y=2\) and \(d=0\) are the roots, each with multiplicity \(s-1\), of a quintic equation which is the characteristic polynomial of the transfer matrix \(T_{Z,tri,2,0a}\). This matrix may be obtained from \(T_{Z,tri,2,1}\) by the replacements \(s \rightarrow q-s\) and \(w \rightarrow w^{-1}\) and then multiplication by \(w^2\).

Six of the \(\lambda _{Z,tri,L_y,d,j}\) with \(L_y=2\) and \(d=0\) are the roots, each with multiplicity 1, of a degree-6 equation which is the characteristic polynomial of the matrix \(T_{Z,tri,2,0b}\) with entries

$$\begin{aligned} (T_{Z,tri,2,0b})_{1,1}= & {} {\tilde{q}}^2 + 4v{\tilde{q}} + 5v^2 + v^3\end{aligned}$$
(10.20)
$$\begin{aligned} (T_{Z,tri,2,0b})_{1,2}= & {} sw({\tilde{q}} + v)\end{aligned}$$
(10.21)
$$\begin{aligned} (T_{Z,tri,2,0b})_{1,3}= & {} sw({\tilde{q}} + 2v)\end{aligned}$$
(10.22)
$$\begin{aligned} (T_{Z,tri,2,0b})_{1,4}= & {} sw^2(1+v)\end{aligned}$$
(10.23)
$$\begin{aligned} (T_{Z,tri,2,0b})_{1,5}= & {} s(s-1)w^2\end{aligned}$$
(10.24)
$$\begin{aligned} (T_{Z,tri,2,0b})_{1,6}= & {} (1+v)({\tilde{q}} + 3v + v^2)\end{aligned}$$
(10.25)
$$\begin{aligned} (T_{Z,tri,2,0b})_{2,1}= & {} {\tilde{q}}^2 + 3v{\tilde{q}} + 3v^2 + v^3\end{aligned}$$
(10.26)
$$\begin{aligned} (T_{Z,tri,2,0b})_{2,2}= & {} w(v+s)({\tilde{q}} + v)\end{aligned}$$
(10.27)
$$\begin{aligned} (T_{Z,tri,2,0b})_{2,3}= & {} sw({\tilde{q}} + v)\end{aligned}$$
(10.28)
$$\begin{aligned} (T_{Z,tri,2,0b})_{2,4}= & {} w^2(1+v)(v+s)\end{aligned}$$
(10.29)
$$\begin{aligned} (T_{Z,tri,2,0b})_{2,5}= & {} w^2(s-1)(v+s)\end{aligned}$$
(10.30)
$$\begin{aligned} (T_{Z,tri,2,0b})_{2,6}= & {} (1+v)({\tilde{q}} + 2v + v^2)\end{aligned}$$
(10.31)
$$\begin{aligned} (T_{Z,tri,2,0b})_{3,1}= & {} {\tilde{q}}^2 + 2v{\tilde{q}} + v^2 \end{aligned}$$
(10.32)
$$\begin{aligned} (T_{Z,tri,2,0b})_{3,2}= & {} w{\tilde{q}}(v + s)\end{aligned}$$
(10.33)
$$\begin{aligned} (T_{Z,tri,2,0b})_{3,3}= & {} w(v+s)({\tilde{q}} + v)\end{aligned}$$
(10.34)
$$\begin{aligned} (T_{Z,tri,2,0b})_{3,4}= & {} w^2(1+v)(s+2v+v^2)\end{aligned}$$
(10.35)
$$\begin{aligned} (T_{Z,tri,2,0b})_{3,5}= & {} w^2(2vs-2v-s+s^2)\end{aligned}$$
(10.36)
$$\begin{aligned} (T_{Z,tri,2,0b})_{3,6}= & {} (1+v)({\tilde{q}} + v)\end{aligned}$$
(10.37)
$$\begin{aligned} (T_{Z,tri,2,0b})_{4,1}= & {} (T_{Z,tri,2,0b})_{5,1} = {\tilde{q}} ({\tilde{q}} + v)\end{aligned}$$
(10.38)
$$\begin{aligned} (T_{Z,tri,2,0b})_{4,2}= & {} w{\tilde{q}} (s + 2v + v^2)\end{aligned}$$
(10.39)
$$\begin{aligned} (T_{Z,tri,2,0b})_{4,3}= & {} (T_{Z,tri,2,0b})_{5,3} = w{\tilde{q}} (s+v)\end{aligned}$$
(10.40)
$$\begin{aligned} (T_{Z,tri,2,0b})_{4,4}= & {} w^2(1+v)(s + 3v + 3v^2 + v^3)\end{aligned}$$
(10.41)
$$\begin{aligned} (T_{Z,tri,2,0b})_{4,5}= & {} w^2(s-1)(s+3v+v^2)\end{aligned}$$
(10.42)
$$\begin{aligned} (T_{Z,tri,2,0b})_{4,6}= & {} (T_{Z,tri,2,0b})_{5,6} = {\tilde{q}} (1+v)\end{aligned}$$
(10.43)
$$\begin{aligned} (T_{Z,tri,2,0b})_{5,2}= & {} w{\tilde{q}} (s+2v)\end{aligned}$$
(10.44)
$$\begin{aligned} (T_{Z,tri,2,0b})_{5,4}= & {} w^2(1+v)(s+3v+v^2)\end{aligned}$$
(10.45)
$$\begin{aligned} (T_{Z,tri,2,0b})_{5,5}= & {} w^2(s^2-s+3vs-3v+v^2)\end{aligned}$$
(10.46)
$$\begin{aligned} (T_{Z,tri,2,0b})_{6,1}= & {} v^2 ({\tilde{q}} + 3v + v^2)\end{aligned}$$
(10.47)
$$\begin{aligned} (T_{Z,tri,2,0b})_{6,2}= & {} (T_{Z,tri,2,0b})_{6,4} = (T_{Z,tri,2,0b})_{6,5} = 0\end{aligned}$$
(10.48)
$$\begin{aligned} (T_{Z,tri,2,0b})_{6,3}= & {} swv^2\end{aligned}$$
(10.49)
$$\begin{aligned} (T_{Z,tri,2,0b})_{6,6}= & {} v^2(1+v)(2+v) \end{aligned}$$
(10.50)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, SC., Shrock, R. Exact Partition Functions for the q-State Potts Model with a Generalized Magnetic Field on Lattice Strip Graphs. J Stat Phys 161, 915–932 (2015). https://doi.org/10.1007/s10955-015-1357-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1357-z

Keywords

Navigation