Skip to main content
Log in

Quasi-Deterministic Properties of Random Gaussian Fields Constrained by a Large Quadratic Form

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Completing the study initiated by Mounaix and Collet (J Stat Phys 143:139–147, 2011), we investigate the realizations of a Gaussian random field in the limit where a given (general) quadratic form of the field is large. Concentration in \(L^2\) and in probability is proved under mild conditions and the resulting quasi-deterministic behavior of the field is given. Applications to a large local quadratic form are considered in two specific cases. In particular, the quasi-deterministic structure of a Gaussian random flow with a large local helicity at some given point is determined explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Such a basis exists as \(\fancyscript{H}\) is a separable Hilbert space.

References

  1. Mounaix, Ph, Collet, P.: Linear amplifier breakdown and concentration properties of a Gaussian field given that its \(L^2\)-norm is large. J. Stat. Phys. 143, 139–147 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Mounaix, Ph, Divol, L.: Breakdown of hot-spot model in determining convective amplification in large homogeneous systems. Phys. Rev. Lett. 93(185003), 1–4 (2004)

    Google Scholar 

  3. Moffat, H.K.: Magnetic Field Generation in Electrically conducting Fluids. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  4. Boccotti, P.: Wave Mechanics for Ocean Engineering. Elsevier oceanography series, 64. Elsevier, Amsterdam (2000). references therein

    MATH  Google Scholar 

  5. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer monographs in mathematics. Springer, New York (2007)

    MATH  Google Scholar 

  6. Gelfand, I.M., Vilenkin, N.Y.: Generalized Functions, vol. IV. Academic Press, New York (1964)

    Google Scholar 

  7. Adler, R.J.: The Geometry of Random Fields, Wiley Series in Probability and Mathematical Statistics. Wiley, Chichester (1981)

    Google Scholar 

  8. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Applied mathematics series. National Bureau of Standards, Washington (1985)

    Google Scholar 

Download references

Acknowledgments

The author warmly thanks Harvey A. Rose for providing valuable insights, and in particular for pointing out the problem solved in Sect. 4.2, which was one of the motivations for this work. He also thanks Girish Sharma, Pierre Collet, and Satya N. Majumdar for useful discussions, as well as Joel L. Lebowitz for interest and useful discussions on related subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Mounaix.

Appendix: Proof of Proposition 1 for a Real Field (\(\varvec{\fancyscript{H}=L^2(\Lambda )\otimes \mathbb {R}^N}\))

Appendix: Proof of Proposition 1 for a Real Field (\(\varvec{\fancyscript{H}=L^2(\Lambda )\otimes \mathbb {R}^N}\))

For a real field, i.e. for \(\fancyscript{H}=L^2(\Lambda )\otimes \mathbb {R}^N\), one has \(\langle \varphi \vert \hat{O}\vert \varphi \rangle = \langle \varphi \vert \hat{O}^S\vert \varphi \rangle \) and the symmetric operator to be considered is actually \(\hat{O}^S\), the symmetric part of \(\hat{O}\). (It follows in particular that \(\hat{O}\) needs not be symmetric as it always appears through its symmetric part only).

We give the proof for “\(\pm =+\)”. (The proof for “\(\pm =-\)” is similar). To estimate the two conditional probabilities on the right-hand side of (9) we first need to bound \(\mathbb {P}(\langle \varphi \vert \hat{O}^S\vert \varphi \rangle >u)\) from below. Let \(\rho (v)\) denote the probability distribution function (pdf) of \(\sum _{\lbrace 1\le n\le g_1\rbrace \cup \lbrace n<0\rbrace }\lambda _n t_n^2\). One has the integral representation

$$\begin{aligned} \rho (v)=\int _{-\infty }^{+\infty }\frac{\exp (-ikv)}{(1-2ik\lambda _1)^{g_1/2}}\, \prod _{n>0}\frac{1}{\sqrt{1-2ik\lambda _{-n}}}\, \frac{dk}{2\pi }. \end{aligned}$$
(79)

For \(v\rightarrow +\infty \), the leading asymptotic behavior of (79) is determined by the vicinity of the singularity at \(k=-i/2\lambda _1\) and one gets

$$\begin{aligned} \rho (v)\sim & {} \prod _{n>0}\frac{1}{\sqrt{1-\lambda _{-n}/\lambda _1}}\, \int _{-\infty }^{+\infty }\frac{\exp (-ikv)}{(1-2ik\lambda _1)^{g_1/2}}\, \frac{dk}{2\pi } \\= & {} \frac{\mathrm{e}^{-v/2\lambda _1}}{2\lambda _1}\prod _{n>0}\frac{1}{\sqrt{1-\lambda _{-n}/\lambda _1}}\, \int _{1-i\infty }^{1+i\infty }\frac{\exp (vs/2\lambda _1)}{s^{g_1/2}}\, \frac{ds}{2i\pi }\ \ \ \ (v\rightarrow +\infty ), \nonumber \end{aligned}$$
(80)

where \(s=1-2ik\lambda _1\). (Note that \(\hat{M}\) being trace class ensures that the product in front of the integral exist). The remaining s-integral is easily obtained from [8, see Eqs. 29.3.3 to 29.3.6, p. 1023]. One finds

$$\begin{aligned} \rho (v)\sim \frac{1}{(g_1/2-1)!}\prod _{n>0}\frac{1}{\sqrt{1-\lambda _{-n}/\lambda _1}}\, \left( \frac{v}{2\lambda _1}\right) ^{g_1/2-1} \frac{\exp (-v/2\lambda _1)}{2\lambda _1}\ \ \ \ (v\rightarrow +\infty ),\qquad \end{aligned}$$
(81)

from which it follows that for every \(0<\alpha <1\), there is \(v_0 >0\) such that for every \(v>v_0\)

$$\begin{aligned} \rho (v)\ge \frac{(1-\alpha )}{(g_1/2-1)!}\prod _{n>0}\frac{1}{\sqrt{1-\lambda _{-n}/\lambda _1}}\, \left( \frac{v}{2\lambda _1}\right) ^{g_1/2-1} \frac{\exp (-v/2\lambda _1)}{2\lambda _1}. \end{aligned}$$
(82)

From (82) and the lower bound

$$\begin{aligned} \mathbb {P}\left( \langle \varphi \vert \hat{O}^S\vert \varphi \rangle >u\right)\equiv & {} \mathbb {P}\left( \sum _n \lambda _n t_n^2 >u\right) \nonumber \\\ge & {} \mathbb {P}\left( \sum _{\lbrace 1\le n\le g_1\rbrace \cup \lbrace n<0\rbrace }\lambda _n t_n^2 >u\right) \nonumber \\= & {} \int _u^{+\infty }\rho (v)\, dv, \end{aligned}$$
(83)

one finds that for \(u>v_0\),

$$\begin{aligned} \mathbb {P}\left( \langle \varphi \vert \hat{O}^S\vert \varphi \rangle >u\right) \ge \frac{C_1(\alpha )}{1-\alpha }\, \int _u^{+\infty }v^{g_1/2-1} \exp \left( -\frac{v}{2\lambda _1}\right) \, \frac{dv}{2\lambda _1}, \end{aligned}$$
(84)

with

$$\begin{aligned} C_1(\alpha ) = \frac{(1-\alpha )^2}{(g_1/2-1)!\, (2\lambda _1)^{g_1/2-1}} \prod _{n>0}\frac{1}{\sqrt{1-\lambda _{-n}/\lambda _1}}. \end{aligned}$$
(85)

From the asymptotics

$$\begin{aligned} \int _u^{+\infty }v^{g_1/2-1}\exp \left( -\frac{v}{2\lambda _1}\right) \, \frac{dv}{2\lambda _1}\sim u^{g_1/2-1}\exp \left( -\frac{u}{2\lambda _1}\right) \ \ \ \ (u\rightarrow +\infty ), \end{aligned}$$

it follows that there is \(v_1>0\) such that for every \(u>v_1\)

$$\begin{aligned} \int _u^{+\infty }v^{g_1/2-1}\exp \left( -\frac{v}{2\lambda _1}\right) \, \frac{dv}{2\lambda _1}\ge (1-\alpha )\, u^{g_1/2-1}\exp \left( -\frac{u}{2\lambda _1}\right) . \end{aligned}$$
(86)

Injecting (86) into (84), one finds that for u large enough (i.e. \(u>\max \lbrace v_0,v_1\rbrace \))

$$\begin{aligned} \mathbb {P}\left( \langle \varphi \vert \hat{O}^S\vert \varphi \rangle >u\right) \ge C_1(\alpha )\, u^{g_1/2-1}\exp \left( -\frac{u}{2\lambda _1}\right) . \end{aligned}$$
(87)

[Note that if \(g_1>1\), one can as well follow the same calculation as in the complex case, i.e. without using (86), and \((1-\alpha )^2\) is replaced with \(1-\alpha \) in (85)]. First, we estimate the conditional probabilities \(\mathbb {P}_u\left( \Vert \overline{\varphi }\Vert _2^2<a\right) \). One has

$$\begin{aligned}&\mathbb {P}\left( \Vert \overline{\varphi }\Vert _2^2 <a,\, \langle \varphi \vert \hat{O}^S\vert \varphi \rangle >u\right) = \mathbb {P}\left( \sum _{i,j=1}^{g_1}\langle \lambda _i\vert \hat{C}\vert \lambda _j\rangle t_i t_j <a,\, \sum _i\lambda _i t_i^2 >u\right) \nonumber \\&\le \mathbb {P}\left( \sum _{i,j=1}^{g_1}\langle \lambda _i\vert \hat{C}\vert \lambda _j\rangle t_i t_j <a,\, \sum _{i\ge 1}\lambda _i t_i^2 >u\right) . \end{aligned}$$
(88)

The matrix \(\langle \lambda _i\vert \hat{C}\vert \lambda _j\rangle \) is a \(g_1\times g_1\) positive definite symmetric (real) matrix. Let \(\tilde{\mu }_1\ge \tilde{\mu }_2\ge \cdots \ge \tilde{\mu }_{g_1}\) denote its eigenvalues and \(\lbrace \vert \tilde{\mu }_i\rangle \rbrace \) the corresponding orthonormal basis of eigenvectors. For every realization of the \(t_i\) one has

$$\begin{aligned} \sum _{i,j=1}^{g_1}\langle \lambda _i\vert \hat{C}\vert \lambda _j\rangle t_i t_j =\sum _{n=1}^{g_1}\tilde{\mu }_n \tilde{t}_n^2, \end{aligned}$$
(89)

where

$$\begin{aligned} \tilde{t}_n=\sum _{i=1}^{g_1}\langle \tilde{\mu }_n\vert \lambda _i\rangle t_i. \end{aligned}$$
(90)

From (90) one finds that the \(\tilde{t}_i\) have the same statistical properties as the \(t_i\) (i.e. they are i.i.d. real Gaussian random variables with \(\langle \tilde{t}_i\rangle =0\) and \(\langle \tilde{t}_i^2\rangle =1\)), with

$$\begin{aligned} \sum _{i=1}^{g_1} t_i^2 =\sum _{i=1}^{g_1}\tilde{t}_i^2. \end{aligned}$$
(91)

Using (90) and (91) on the right-hand side of (88) and dropping the tilde (because the \(\tilde{t}_i\) and the \(t_i\) have the same statistical properties), one obtains

$$\begin{aligned} \mathbb {P}\left( \Vert \overline{\varphi }\Vert _2^2 <a,\, \langle \varphi \vert \hat{O}^S\vert \varphi \rangle >u\right) \le \mathbb {P}\left( \sum _{i=1}^{g_1}\tilde{\mu }_i t_i^2 <a,\, \sum _{i\ge 1}\lambda _i t_i^2 >u\right) . \end{aligned}$$
(92)

It follows from \(\mu _n>0\) for every n and (2) that \(\tilde{\mu }_i =\langle \tilde{\mu }_i\vert \hat{C}\vert \tilde{\mu }_i\rangle >0\) for every i, and from \(\hat{M}\) being trace class that \(g_1<+\infty \). Thus,

$$\begin{aligned} \tilde{\mu }_{min}=\inf _{1\le i\le g_1}\left\{ \tilde{\mu }_i\, :\, \tilde{\mu }_i>0\right\} =\tilde{\mu }_{g_1}>0, \end{aligned}$$
(93)

and (92) is bounded above by

$$\begin{aligned}&\mathbb {P}\left( \Vert \overline{\varphi }\Vert _2^2 <a,\, \langle \varphi \vert \hat{O}^S\vert \varphi \rangle >u\right) \le \mathbb {P}\left( \tilde{\mu }_{min}\sum _{i=1}^{g_1} t_i^2 <a,\, \sum _{i\ge 1}\lambda _i t_i^2 >u\right) \nonumber \\&\quad =\int _{x=0}^{+\infty }\mathbb {P}\left( \frac{u-x}{\lambda _1} <\sum _{i=1}^{g_1} t_i^2 <\frac{a}{\tilde{\mu }_{min}}\right) \, d\mathbb {P}\left( \sum _{i>g_1}\lambda _i t_i^2 =x\right) \nonumber \\&\quad =\int _{x=u-\lambda _1 a/\tilde{\mu }_{min}}^{+\infty }\mathbb {P}\left( \frac{u-x}{\lambda _1} <\sum _{i=1}^{g_1} t_i^2 <\frac{a}{\tilde{\mu }_{min}}\right) \, d\mathbb {P}\left( \sum _{i>g_1}\lambda _i t_i^2 =x\right) \nonumber \\&\quad \le \int _{x=u-\lambda _1 a/\tilde{\mu }_{min}}^{+\infty }d\mathbb {P}\left( \sum _{i>g_1}\lambda _i t_i^2 =x\right) \nonumber \\&\quad =\mathbb {P}\left( \sum _{i>g_1}\lambda _i t_i^2 >u-\frac{\lambda _1 a}{\tilde{\mu }_{min}}\right) , \end{aligned}$$
(94)

where we have used the statistical independence of the \(t_i\) (second line), and the fact that the probability in the integrand vanishes identically for \(x<u-\lambda _1 a/\tilde{\mu }_{min}\) (third line). Now, by exponential Markov inequality, one has for every positive \(c<1/2\lambda _{g_1+1}\),

$$\begin{aligned} \mathbb {P}\left( \sum _{i>g_1}\lambda _i t_i^2 >u-\frac{\lambda _1 a}{\tilde{\mu }_{min}}\right)\le & {} \mathrm{e}^{-c(u-\lambda _1 a/\tilde{\mu }_{min})}\mathbb {E}\left[\exp \left( c\sum _{i>g_1}\lambda _i t_i^2\right) \right]\nonumber \\= & {} \mathrm{e}^{-c(u-\lambda _1 a/\tilde{\mu }_{min})}\prod _{i>g_1}\frac{1}{\sqrt{1-2c\lambda _i}}, \end{aligned}$$

and by taking \(c=(\lambda _1^{-1}+\lambda _{g_1+1}^{-1})/4\), one gets

$$\begin{aligned} \mathbb {P}\left( \Vert \overline{\varphi }\Vert _2^2 <a,\, \langle \varphi \vert \hat{O}^S\vert \varphi \rangle >u\right) \le C_2(a) \exp \left[-\left( \frac{1}{\lambda _1}+\frac{1}{\lambda _{g_1+1}}\right) \frac{u}{4}\right], \end{aligned}$$
(95)

with

$$\begin{aligned} C_2(a)=\exp \left[\left( 1+\frac{\lambda _1}{\lambda _{g_1+1}}\right) \frac{a}{4\tilde{\mu }_{min}}\right]\prod _{i>g_1}\frac{1}{\sqrt{1-(\lambda _1^{-1}+\lambda _{g_1+1}^{-1})\lambda _i/2}}. \end{aligned}$$
(96)

The existence of the product on the right-hand side of (96) is ensured by \(\hat{M}\) being trace class. Finally, it follows from the two estimates (87) and (95) that for u large enough \(\mathbb {P}_u\left( \Vert \overline{\varphi }\Vert _2^2<a\right) \) is bounded above by

$$\begin{aligned} \mathbb {P}_u\left( \Vert \overline{\varphi }\Vert _2^2<a\right)\equiv & {} \frac{\mathbb {P}\left( \Vert \overline{\varphi }\Vert _2^2 <a,\, \langle \varphi \vert \hat{O}^S\vert \varphi \rangle >u\right) }{\mathbb {P}\left( \langle \varphi \vert \hat{O}^S\vert \varphi \rangle >u\right) } \nonumber \\\le & {} \frac{C_2(a)}{C_1(\alpha )}\, \frac{1}{u^{g_1/2-1}}\, \exp \left[-\left( \frac{1}{\lambda _{g_1+1}}-\frac{1}{\lambda _1}\right) \frac{u}{4}\right]. \end{aligned}$$
(97)

We now estimate the limit \(\lim _{u\rightarrow +\infty }\mathbb {P}_u\left( \Vert \delta \varphi \Vert _2^2>\varepsilon a\right) \). One has

$$\begin{aligned}&d\mathbb {P}\left( \lbrace t_{i\notin [1,g_1]}\rbrace ,\, \sum _i \lambda _i t_i^2 >u\right) \le d\mathbb {P}\left( \lbrace t_{i\notin [1,g_1]}\rbrace ,\, \sum _{i\ge 1} \lambda _i t_i^2 >u\right) \nonumber \\&\quad =\mathbb {P}\left( \sum _{i=1}^{g_1} t_i^2 >\frac{u}{\lambda _1}-\sum _{i>g_1}\frac{\lambda _i}{\lambda _1} t_i^2\right) \, \prod _{i\notin [1,g_1]}\frac{\mathrm{e}^{-t_i^2/2}}{\sqrt{2\pi }}\, dt_i, \end{aligned}$$
(98)

with

$$\begin{aligned}&\mathbb {P}\left( \sum _{i=1}^{g_1} t_i^2 >\frac{u}{\lambda _1}-\sum _{i>g_1}\frac{\lambda _i}{\lambda _1} t_i^2\right) \nonumber \\&=\frac{S_{g_1}}{2(2\pi )^{g_1/2}} \int _{(u-\sum _{i>g_1}\lambda _i t_i^2)/\lambda _1}^{+\infty }H(v)\, v^{g_1/2-1}\, \mathrm{e}^{-v/2}\, dv, \end{aligned}$$
(99)

where H(v) is the Heaviside step function and \(S_{g_1}\) is the unit sphere surface area in a \(g_1\)-dimensional space (\(S_1=2\)).

If \(g_1>1\) one can follow exactly the same line as in the complex field case. One finds that for every \(\alpha >0\), there is \(v_2 >0\) such that for every \(u>v_2\)

$$\begin{aligned} \mathbb {P}\left( \sum _{i=1}^{g_1} t_i^2 >\frac{u}{\lambda _1}-\sum _{i>g_1}\frac{\lambda _i}{\lambda _1} t_i^2\right) \le \frac{(1+\alpha )\, S_{g_1}}{(2\pi )^{g_1/2}}\left( \frac{u}{\lambda _1}\right) ^{g_1/2-1}\, \mathrm{e}^{-u/2\lambda _1} \, \prod _{i>g_1}\mathrm{e}^{\lambda _i t_i^2/2\lambda _1}.\qquad \end{aligned}$$
(100)

Taking \(0<\alpha <1\), it follows from (87), (98), and (100) that for u large enough (i.e. \(u>\max \lbrace v_0,v_1,v_2\rbrace \))

$$\begin{aligned} d\mathbb {P}_u\left( \lbrace t_{i\notin [1,g_1]}\rbrace \right) \le C_3(\alpha ) \, \left( \prod _{i<0}\frac{\mathrm{e}^{-t_i^2/2}}{\sqrt{2\pi }}\, dt_i\right) \, \left( \prod _{i>g_1}\frac{\mathrm{e}^{-(1-\lambda _i/\lambda _1)t_i^2/2}}{\sqrt{2\pi }}\, dt_i\right) , \end{aligned}$$
(101)

with

$$\begin{aligned} C_3(\alpha )=\frac{(1+\alpha )\, S_{g_1}}{(2\pi )^{g_1/2}C_1(\alpha )\lambda _1^{g_1/2-1}}. \end{aligned}$$
(102)

Using (101) to estimate \(\mathbb {E}_u\left[\exp \left( c\Vert \delta \varphi \Vert _2^2\right) \right]\), one finds that for u large enough

$$\begin{aligned} \mathbb {E}_u\left[\exp \left( c\Vert \delta \varphi \Vert _2^2\right) \right]\le C_3(\alpha )C_4(c), \end{aligned}$$
(103)

where \(C_4(c)\) is an infinite product of Gaussian integrals the existence of which is ensured if the matrix

$$\begin{aligned} \mathrm{diag}\left( \min \left\{ 1,\, 1-\lambda _i/\lambda _1\right\} \right) -2c\, \langle \lambda _i\vert \hat{C}\vert \lambda _j\rangle , \end{aligned}$$

is (strictly) positive definite, and the matrix

$$\begin{aligned} \mathrm{diag}\left( \max \left\{ 0,\, \lambda _i/\lambda _1\right\} \right) +2c\, \langle \lambda _i\vert \hat{C}\vert \lambda _j\rangle , \end{aligned}$$

is trace class, with i and j \(\notin [1,\, g_1]\). The latter condition is fulfilled by \(\hat{M}\) and \(\hat{C}\) being trace class. The former one requires \(0<c<(1-\lambda _{g_1+1}/\lambda _1)/2\mu _1\), which follows from \(\Vert \hat{C}\Vert = \mu _1 <+\infty \) and \(\min \left\{ 1,\, 1-\lambda _i/\lambda _1\right\} \ge 1-\lambda _{g_1+1}/\lambda _1>0\) for \(i\notin [1,\, g_1]\). Thus, there exists \(c>0\) such that \(C_4(c)<+\infty \), and by exponential Markov inequality and Eq. (103) one finds that for u large enough

$$\begin{aligned} \mathbb {P}_u\left( \Vert \delta \varphi \Vert _2^2>\varepsilon a\right)\le & {} \mathrm{e}^{-\varepsilon ca} \mathbb {E}_u\left[\exp \left( c\Vert \delta \varphi \Vert _2^2\right) \right]\nonumber \\\le & {} C_3(\alpha )C_4(c)\, \mathrm{e}^{-\varepsilon ca}. \end{aligned}$$
(104)

The end of the proof is the same as in the complex case.

If \(g_1=1\) a different approach is needed because, in this case, \(1/\sqrt{v}\) is not an increasing function of v and one cannot use the arguments leading from (99) to (100). In the following we write \(\sigma =\sum _{i>1}\lambda _i t_i^2\) and for fixed \(0<\varepsilon <1\) we consider the two complementary domains \(\sigma <(1-\varepsilon )u\) and \(\sigma \ge (1-\varepsilon )u\) respectively.

In the first domain, one can bound (99) above by making the change of variable \(v\rightarrow v-\sigma /\lambda _1\) on the right-hand side of (99) and using the fact that \(1/\sqrt{v}\) is a decreasing function of v. One obtains

$$\begin{aligned} \mathbb {P}\left( t_1^2 >\frac{u-\sigma }{\lambda _1}\right) \le 2\sqrt{\frac{\lambda _1}{\varepsilon }}\, \frac{1}{\sqrt{u}}\, \mathrm{e}^{-u/2\lambda _1} \, \prod _{i>g_1}\mathrm{e}^{\lambda _i t_i^2/2\lambda _1}, \end{aligned}$$
(105)

which is very similar to (100) with a different constant. Taking \(0<\alpha <1\), it follows from (87), (98), and (105) that for u large enough (i.e. \(u>\max \lbrace v_0,v_1\rbrace \))

$$\begin{aligned} d\mathbb {P}_u\left( \lbrace t_{i\notin [1,g_1]}\rbrace \right) \le C_3(\alpha ) \, \left( \prod _{i<0}\frac{\mathrm{e}^{-t_i^2/2}}{\sqrt{2\pi }}\, dt_i\right) \, \left( \prod _{i>g_1}\frac{\mathrm{e}^{-(1-\lambda _i/\lambda _1)t_i^2/2}}{\sqrt{2\pi }}\, dt_i\right) , \end{aligned}$$
(106)

with

$$\begin{aligned} C_3(\alpha )=\frac{2}{C_1(\alpha )}\, \sqrt{\frac{\lambda _1}{\varepsilon }}. \end{aligned}$$
(107)

Using first (106) and then \({\varvec{1}}_{\lbrace \sigma <(1-\varepsilon )u\rbrace }\le 1\) to estimate \(\mathbb {E}_u\left[\exp \left( c\Vert \delta \varphi \Vert _2^2\right) {\varvec{1}}_{\lbrace \sigma <(1-\varepsilon )u\rbrace }\right]\), one finds

$$\begin{aligned} \mathbb {E}_u\left[\exp \left( c\Vert \delta \varphi \Vert _2^2\right) {\varvec{1}}_{\lbrace \sigma <(1-\varepsilon )u\rbrace }\right]\le C_3(\alpha )C_4(c), \end{aligned}$$
(108)

where \(C_4(c)\) is the same infinite product of Gaussian integrals as in (103).

In the second domain, we use \(\mathbb {P}[t_1^2>(u-\sigma )/\lambda _1]\le 1\) to bound (98) trivially by

$$\begin{aligned} d\mathbb {P}\left( \lbrace t_{i\ne 1}\rbrace ,\, \sum _i \lambda _i t_i^2 >u\right) \le \prod _{i\ne 1}\frac{\mathrm{e}^{-t_i^2/2}}{\sqrt{2\pi }}\, dt_i. \end{aligned}$$
(109)

From (87), (109), and Hölder’s inequality it follows that for u large enough,

$$\begin{aligned}&\mathbb {E}_u\left[\exp \left( c\Vert \delta \varphi \Vert _2^2\right) {\varvec{1}}_{\lbrace \sigma \ge (1-\varepsilon )u\rbrace }\right]\le \frac{\sqrt{u}\mathrm{e}^{u/2\lambda _1}}{C_1(\alpha )} \mathbb {E}\left[\exp \left( c\Vert \delta \varphi \Vert _2^2\right) {\varvec{1}}_{\lbrace \sigma \ge (1-\varepsilon )u\rbrace }\right]\nonumber \\&\le \frac{\sqrt{u}\mathrm{e}^{u/2\lambda _1}}{C_1(\alpha )} \mathbb {E}\left[\exp \left( qc\Vert \delta \varphi \Vert _2^2\right) \right]^{1/q} \mathbb {P}\left[\sigma \ge (1-\varepsilon )u\right]^{1/p} \nonumber \\&\le \frac{C_4(qc)^{1/q}}{C_1(\alpha )}\sqrt{u}\mathrm{e}^{u/2\lambda _1} \mathbb {P}\left[\sigma \ge (1-\varepsilon )u\right]^{1/p}, \end{aligned}$$
(110)

with \(p>1\), \(1/p+1/q=1\), and where we have used \(\mathbb {E}\left[\exp \left( c\Vert \delta \varphi \Vert _2^2\right) \right]\le C_4(c)\) (to avoid introducing another constant). The probability on the right-hand side of (110) can be estimated from the asymptotic evaluation of its integral representation for large u. Skipping the details, one finds that for every \(\alpha >0\), there is \(v_2>0\) such that for every \(u>v_2\)

$$\begin{aligned} \mathbb {P}\left[\sigma \ge (1-\varepsilon )u\right]\le (1+\alpha )C_5(\alpha )u^{g_2/2-1} \exp \left[-\frac{(1-\varepsilon )u}{2\lambda _2}\right], \end{aligned}$$
(111)

where \(C_5(\alpha )\) is a constant. Injecting (111) into (110) one obtains, for u large enough (i.e. \(u>\max \lbrace v_0,v_1,v_2\rbrace \))

$$\begin{aligned}&\mathbb {E}_u\left[\exp \left( c\Vert \delta \varphi \Vert _2^2\right) {\varvec{1}}_{\lbrace \sigma \ge (1-\varepsilon )u\rbrace }\right]\le (1+\alpha )\, \frac{C_5(\alpha )C_4(qc)^{1/q}}{C_1(\alpha )} \nonumber \\&\qquad \times u^{1/2+g_2/2p-1/p}\exp \left[-\left( \frac{1-\varepsilon }{p\lambda _2}-\frac{1}{\lambda _1}\right) \, \frac{u}{2}\right]. \end{aligned}$$
(112)

Write

$$\begin{aligned} \gamma (\varepsilon ,p)=\frac{1}{2}\, \left( \frac{1-\varepsilon }{p\lambda _2}-\frac{1}{\lambda _1}\right) . \end{aligned}$$

It remains to fix \(0<\varepsilon <1-\lambda _2/\lambda _1\), \(1<p<(1-\varepsilon )\lambda _1/\lambda _2\), and \(0<c<(1-\lambda _{g_1+1}/\lambda _1)/2q\mu _1\) and one has, for u large enough,

$$\begin{aligned} \mathbb {E}_u\left[\exp \left( c\Vert \delta \varphi \Vert _2^2\right) {\varvec{1}}_{\lbrace \sigma \ge (1-\varepsilon )u\rbrace }\right]\le C_6(\alpha )\, u^{1/2+g_2/2p-1/p} \mathrm{e}^{-\gamma (\varepsilon ,p)u}, \end{aligned}$$
(113)

with \(\gamma (\varepsilon ,p)>0\) and where \(C_6(\alpha )\) is a constant. Note that c is chosen such that \(C_4(qc)\) on the right-hand side of (112) exists, and since \(C_4(c)\le C_4(qc)\) by \(q>1\), it follows that \(C_4(c)\) on the right-hand side of (108) exists too. By exponential Markov inequality, Eq. (108), and Eq. (113) one finds that for u large enough

$$\begin{aligned} \mathbb {P}_u\left( \Vert \delta \varphi \Vert _2^2>\varepsilon a\right)&\le \mathrm{e}^{-\varepsilon ca} \mathbb {E}_u\left[\exp \left( c\Vert \delta \varphi \Vert _2^2\right) \right]\nonumber \\&\le \left[C_3(\alpha )C_4(c)+C_6(\alpha )\, u^{1/2+g_2/2p-1/p} \mathrm{e}^{-\gamma (\varepsilon ,p)u}\right]\, \mathrm{e}^{-\varepsilon ca}. \end{aligned}$$
(114)

Finally, using the estimates (97) with \(g_1=1\) and (114) on the right-hand side of (9) and taking the limit \(u\rightarrow +\infty \), one obtains

$$\begin{aligned} \lim _{u\rightarrow +\infty }\mathbb {P}_u\left( \Vert \delta \varphi \Vert _2^2>\varepsilon \Vert \overline{\varphi }\Vert _2^2\right) \le C_3(\alpha )C_4(c)\, \mathrm{e}^{-\varepsilon ca}, \end{aligned}$$
(115)

and \(a>0\) being arbitrary completes the proof of Proposition 1 for a real field [The right-hand side of (115) can be made arbitrarily small]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mounaix, P. Quasi-Deterministic Properties of Random Gaussian Fields Constrained by a Large Quadratic Form. J Stat Phys 160, 561–582 (2015). https://doi.org/10.1007/s10955-015-1278-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1278-x

Keywords

Navigation