Skip to main content
Log in

Complexity of Gaussian Random Fields with Isotropic Increments

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the energy landscape of a model of a single particle on a random potential, that is, we investigate the topology of level sets of smooth random fields on \({\mathbb {R}}^{N}\) of the form \(X_N(x) +\frac{\mu }{2} \Vert x\Vert ^2,\) where \(X_{N}\) is a Gaussian process with isotropic increments. We derive asymptotic formulas for the mean number of critical points with critical values in an open set as the dimension N goes to infinity. In a companion paper, we provide the same analysis for the number of critical points with a given index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auffinger, A., Ben Arous, G.: Complexity of random smooth functions on the highdimensional sphere. Ann. Probab. 41(6), 4214–4247 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auffinger, A., Ben Arous, G., Cerny, J.: Random matrices and complexity of spin glasses. Commun. Pure Appl. Math. 66(2), 165–201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adler, R., Taylor, J.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007)

    MATH  Google Scholar 

  4. Auffinger, A., Zeng, Q.: Complexity of Gaussian random fields with isotropic increments: critical points with given indices, arXiv e-prints (2022). arXiv:2206.13834

  5. Ben Arous, G., Dembo, A., Guionnet, A.: Aging of spherical spin glasses. Probab. Theory Relat. Fields 120(1), 1–67 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben Arous, G., Guionnet, A.: Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Probab. Theory Relat. Fields 108(4), 517–542 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben Arous, G., Mei, S., Montanari, A., Nica, M.: The landscape of the spiked tensor model. Commun. Pure Appl. Math. 72(11), 2282–2330 (2019). https://doi.org/10.1002/cpa.21861

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben Arous, G., Bourgade, P., McKenna, B.: Exponential growth of random determinants beyond invariance. arXiv e-prints (2021)

  9. Ben Arous, G., Bourgade, P., McKenna, B.: Landscape complexity beyond invariance and the elastic manifold, arXiv e-prints (2021)

  10. Bray, A.J., Dean, D.S.: Statistics of critical points of Gaussian Fields on large- dimensional spaces. Phys. Rev. Lett. 98(15), 150201 (2007)

    Article  ADS  Google Scholar 

  11. Crisanti, A., Leuzzi, L.: Spherical 2 + p spin-glass model: an exactly solvable model for glass to spin-glass transition. Phys. Rev. Lett. 93, 217203 (2004)

    Article  ADS  Google Scholar 

  12. Cheng, D., Schwartzman, A.: Expected number and height distribution of critical points of smooth isotropic Gaussian random fields. Bernoulli 24(4B), 3422–3446 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Engel, A.: Replica symmetry breaking in zero dimension. Nucl. Phys. B 410(3), 617–646 (1993)

    Article  ADS  Google Scholar 

  14. Fyodorov, Y.V., Bouchaud, J.-P.: Statistical mechanics of a single particle in a multiscale random potential: Parisi landscapes in finite-dimensional Euclidean spaces. J. Phys. A 41(32), 324009 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fyodorov, Y.V., Le Doussal, P.: Hessian spectrum at the global minimum of highdimensional random landscapes. J. Phys. A Math. Gen. 51(47), 474002 (2018)

    Article  MATH  Google Scholar 

  16. Fyodorov, Y.V., Le Doussal, P.: Manifolds in a high-dimensional random landscape: complexity of stationary points and depinning. Phys. Rev. E 101, 020101 (2020)

    Article  ADS  Google Scholar 

  17. Fyodorov, Y.V., Nadal, C.: Critical behavior of the number of minima of a random landscape at the glass transition point and the Tracy-Widom distribution. Phys. Rev. Lett. 109(16), 167203 (2012)

    Article  ADS  Google Scholar 

  18. Fyodorov, Y.V., Sommers, H.-J.: Classical particle in a box with random potential: exploiting rotational symmetry of replicated Hamiltonian. Nucl. Phys. B 764(3), 128–167 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Fyodorov, Y.V., Williams, I.: Replica symmetry breaking condition exposed by random matrix calculation of landscape complexity. J. Stat. Phys. 129(5–6), 1081–1116 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Fyodorov, Y.V.: Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices. Phys. Rev. Lett. 92(24), 240601 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Grela, J., Khoruzhenko, B.A.: Glass-like transition described by toppling of stability hierarchy. J. Phys. A 55(15), 154001 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Klimovsky, A.: High-dimensional Gaussian fields with isotropic increments seen through spin glasses. Electron. Commun. Probab. 17(17), 14 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Kolmogoroff, A.: The local structure of turbulence in incompressible viscous fluid for very large Reynold’s numbers. C. R. (Doklady) Acad. Sci. URSS (N.S.) 30, 301–305 (1941)

  24. Mézard, M., Parisi, G.: Replica field theory for random manifolds. J. Phys. I France 1(6), 809–836 (1991)

    Article  Google Scholar 

  25. Mezard, M., Parisi, G., Virasoro, M.: Spin Glass Theory and Beyond. World Scientific, Singapore (1986)

    Book  MATH  Google Scholar 

  26. Schoenberg, I.J.: Metric spaces and completely monotone functions. Ann. Math. (2) 39(4), 811–841 (1938)

  27. Schilling, R.L., Song, R., Vondraček, Z.: Bernstein functions, Second, De Gruyter Studies in Mathematics, vol. 37. Walter de Gruyter & Co., Berlin, Theory and applications (2012)

    Google Scholar 

  28. Subag, E.: The complexity of spherical p-spin models-a second moment approach. Ann. Probab. 45(5), 3385–3450 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yaglom, A.M.: Certain types of random fields in n-dimensional space similar to stationary stochastic processes. Teor. Veroyatnost. i Primenen 2, 292–338 (1957)

    MathSciNet  MATH  Google Scholar 

  30. Yaglom, A.M.: Correlation theory of stationary and related random functions. Vol. I, Springer Series in Statistics, Springer-Verlag, New York, Basic results (1987)

  31. Yamada, M., Vilenkin, A.: Hessian eigenvalue distribution in a random gaussian landscape. J. High Energy Phys. 2018(3), 29 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Yan Fyodorov for suggesting the study of fields with isotropic increments and providing several references. We are also grateful to the anonymous referees for many suggestions which have significantly improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Auffinger.

Additional information

Communicated by Horng-Tzer Yau

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Antonio Auffinger: research partially supported by NSF Grant CAREER DMS-1653552 and NSF Grant DMS-1517894. Qiang Zeng: research partially supported by SRG 2020-00029-FST and FDCT 0132/2020/A3.

Appendices

Covariance Function and Its Derivatives

Let \(D_N(r)=D(r/N)\). For \(x,y\in {\mathbb {R}}^N\), let \(\varphi (x,y) =\frac{1}{2}(D_N(\Vert x\Vert ^2)+D_N(\Vert y\Vert ^2)-D_N(\Vert x-y\Vert ^2))\). Under \(X_N(0)=0\), isotropic increments imply that \({\mathbb {E}}X_N(x)=0\); see [Yag87, p.439]. We have

$$\begin{aligned} \textrm{Cov}[H_N(x), H_N(y)]=\textrm{Cov}[X_N(x),X_N(y)]={\mathbb {E}}[X_N(x)X_N(y)]=\varphi (x,y). \end{aligned}$$

Lemma A.1

Assume Assumptions I and II. Then for \(x\in {\mathbb {R}}^N\),

$$\begin{aligned} {\mathbb {E}}(\nabla H_N(x))&=\mu x, \ \ {\mathbb {E}}(\nabla ^2 H_N(x)) = \mu I_N,\\ \textrm{Cov}[H_N(x), \partial _i H_N(x)]&= D'\left( \frac{\Vert x\Vert ^2}{N}\right) x_i,\\ \textrm{Cov}[\partial _i H_N(x),\partial _j H_N(x)]&= D'(0)\delta _{ij},\\ \textrm{Cov}[H_N(x),\partial _{ij} H_N(x)]&= 2D''\left( \frac{\Vert x\Vert ^2}{N}\right) \frac{x_ix_j}{N} +\left[ D'\left( \frac{\Vert x\Vert ^2}{N}\right) -D'(0)\right] \delta _{ij}\\ \textrm{Cov}[\partial _k H_N(x), \partial _{ij} H_N(x)]&= 0,\\ \textrm{Cov}[\partial _{lk} H_N(x), \partial _{ij} H_N(x)]&= -2D''(0)[\delta _{jl}\delta _{ik}+\delta _{il}\delta _{kj} +\delta _{kl}\delta _{ij}]/N, \end{aligned}$$

where \(\delta _{ij}\) are the Kronecker delta function.

Proof

By [AT07, Theorem 1.4.2], \(X_N(x)\) is smooth. We can differentiate inside expectation as in [AT07, (5.5.4)] to find the expectations and

$$\begin{aligned} {\mathbb {E}}[X_N(x)\partial _i X_N(y)]/N&= \partial _{y_i} {\mathbb {E}}(X_N(x) X_N(y))/N\\&=D_N'(\Vert y\Vert ^2)y_i +D_N'(\Vert x-y\Vert ^2)(x_i-y_i),\\ {\mathbb {E}}[\partial _i X_N(x)\partial _j X_N(y)]/N&= \partial _{x_i} [ D_N'(\Vert x-y\Vert ^2)(x_j-y_j)]\\&=2D_N''(\Vert x-y\Vert ^2)(x_i-y_i)(x_j-y_j)+ D_N'(\Vert x-y\Vert ^2)\delta _{ij},\\ {\mathbb {E}}[ X_N(x)\partial _{ij} X_N(y)]/N&= \partial _{y_i} [ D_N'(\Vert y\Vert ^2) y_j +D_N'(\Vert x-y\Vert ^2) (x_j-y_j)]\\&=2D_N''(\Vert y\Vert ^2)y_i y_j+ D_N'(\Vert y\Vert ^2)\delta _{ij} \\&\hspace{5ex} -2D_N''(\Vert x-y\Vert ^2)(x_i-y_i)(x_j-y_j) -D_N'(\Vert x-y\Vert ^2)\delta _{ij},\\ {\mathbb {E}}[\partial _k X_N(x)\partial _{ij} X_N(y)]/N&=-4D_N'''(\Vert x-y\Vert ^2)(x_k-y_k)(x_i-y_i)(x_j-y_j) \\&\hspace{-19ex} -2D_N''(\Vert x-y\Vert ^2)(x_j-y_j)\delta _{ki} -2D_N''(\Vert x-y\Vert ^2)(x_i-y_i)\delta _{kj} -2D_N''(\Vert x-y\Vert ^2)(x_k-y_k)\delta _{ij},\\ {\mathbb {E}}[\partial _{lk} X_N(x)\partial _{ij} X_N(y)]/N&=-8D_N^{(4)}(\Vert x-y\Vert ^2)(x_l-y_l)(x_k-y_k)(x_i-y_i)(x_j-y_j) \\&\hspace{-19ex} -4D_N'''(\Vert x-y\Vert ^2)[(x_i-y_i)(x_j-y_j)\delta _{kl} +(x_k-y_k)(x_j-y_j)\delta _{il}+(x_k-y_k)(x_i-y_i)\delta _{jl}\\&+(x_l-y_l)(x_j-y_j)\delta _{ki} +(x_l-y_l)(x_i-y_i)\delta _{kj} +(x_l-y_l)(x_k-y_k)\delta _{ij}]\\&-2D_N''(\Vert x-y\Vert ^2)[\delta _{jl}\delta _{ik}+\delta _{il}\delta _{kj} +\delta _{kl}\delta _{ij}]. \end{aligned}$$

Substituting \(x=y\),

$$\begin{aligned} {\mathbb {E}}[X_N(x)\partial _i X_N(x)]/N&=D'_N(\Vert x\Vert ^2)x_i,\\ {\mathbb {E}}[\partial _i X_N(x)\partial _j X_N(x)]/N&= D'_N(0)\delta _{ij},\\ {\mathbb {E}}[X_N(x)\partial _{ij} X_N(x)]/N&= 2D_N''(\Vert x\Vert ^2)x_ix_j +D_N'(\Vert x\Vert ^2)\delta _{ij}-D'_N(0)\delta _{ij}\\ {\mathbb {E}}[\partial _k X_N(x)\partial _{ij} X_N(x)]/N&= 0,\\ {\mathbb {E}}[\partial _{lk} X_N(x)\partial _{ij} X_N(x)]/N&= -2D_N''(0)[\delta _{jl}\delta _{ik}+\delta _{il}\delta _{kj} +\delta _{kl}\delta _{ij}]. \end{aligned}$$

Then we note that \(D'_N(r)=D'(r/N)/N\) and \(D_N''(r)=D''(r/N)/N^2\). \(\quad \square \)

Auxiliary Lemmas

For the integral \({\mathbb {E}}\int _{\mathbb {R}}\exp \big (-\frac{1}{2}(N+1)x^2 -\frac{\sqrt{N(N+1)}\mu x}{\sqrt{-D''(0)}}\big ) L_{N+1}(\textrm{d}x)\), we have the following elementary fact which is used in Sect. 2.

Lemma B.1

Let \(\nu _N\) be probability measures on \({\mathbb {R}}\) and \(\mu \ne 0\). Suppose

$$\begin{aligned} \lim _{N\rightarrow \infty } \frac{1}{N}\log \int _{\mathbb {R}}e^{-\frac{1}{2}(N+1)x^2 -\frac{(N+1)\mu x}{\sqrt{-D''(0)}} }\nu _{N+1}(\textrm{d}x) >-\infty . \end{aligned}$$

Then we have

$$\begin{aligned} \lim _{N\rightarrow \infty } \frac{1}{N} \Big (\log \int _{\mathbb {R}}e^{-\frac{1}{2}(N+1)x^2 -\frac{\sqrt{N(N+1)}\mu x}{\sqrt{-D''(0)}} } \nu _{N+1}(\textrm{d}x) - \log \int _{\mathbb {R}}e^{-\frac{1}{2}(N+1)x^2 -\frac{(N+1)\mu x}{\sqrt{-D''(0)}} }\nu _{N+1}(\textrm{d}x)\Big )=0. \end{aligned}$$

Proof

Let

$$\begin{aligned} a_N&= \int _{\mathbb {R}}e^{-\frac{1}{2}(N+1)x^2 -\frac{(N+1)\mu x}{\sqrt{-D''(0)}} }\nu _{N+1}(\textrm{d}x),\\ b_N&= \int _{\mathbb {R}}e^{-\frac{1}{2}(N+1)x^2 -\frac{\sqrt{N(N+1)}\mu x}{\sqrt{-D''(0)}} } \nu _{N+1}(\textrm{d}x) ,\\ c_N&=\int _{\mathbb {R}}e^{-\frac{1}{2}Nx^2 -\frac{N\mu x}{\sqrt{-D''(0)}} }\nu _{N+1}(\textrm{d}x). \end{aligned}$$

We claim \(\lim _{N\rightarrow \infty } \frac{1}{N} \log \frac{ a_N}{c_{N}}=0\). Indeed, note that

$$\begin{aligned} a_N =\int _{\mathbb {R}}e^{-\frac{1}{2}(N+1)(x+\frac{\mu }{\sqrt{-D''(0)}})^2 +\frac{(N+1)\mu ^2}{-2D''(0)}} \nu _{N+1}(\textrm{d}x)\le e^{\frac{\mu ^2}{-2D''(0)}} c_N. \end{aligned}$$

By Jensen’s inequality,

$$\begin{aligned} \frac{\mu ^2}{2D''(0)}\le \log \frac{ c_{N}}{ a_{N}}\le \log \frac{ a_N^{N/(N+1)}}{ a_{N}}=-\frac{1}{N+1}\log a_N. \end{aligned}$$

Then the claim follows from the assumption that \(\lim _{N\rightarrow \infty } \frac{1}{N}\log a_N >-\infty \). From the elementary inequality \(a\wedge b \le (a+b)/2 \le a\vee b\), we have \(\lim _{N\rightarrow \infty } \frac{1}{N} (\log ( a_{N} + c_{N})-\log a_N )=0\). It remains to prove that

$$\begin{aligned} \lim _{N\rightarrow \infty } \frac{1}{N} (\log ( a_{N} + c_{N}) - \log b_N)=0. \end{aligned}$$

Note that

$$\begin{aligned} b_N&\le \int _{-\infty }^{0} e^{-\frac{1}{2}(N+1)x^2 -\frac{(N+1)\mu x}{\sqrt{-D''(0)}} } \nu _{N+1}(\textrm{d}x) + \int _{0}^{\infty } e^{-\frac{1}{2} Nx^2 -\frac{N\mu x}{\sqrt{-D''(0)}} } \nu _{N+1}(\textrm{d}x) \le a_N + c_N. \end{aligned}$$

Let t be a large constant (independent of N) such that

$$\begin{aligned} \lim _{N\rightarrow \infty } \frac{1}{N}\log \int _{\mathbb {R}}e^{-\frac{1}{2}(N+1)x^2 -\frac{(N+1)\mu x}{\sqrt{-D''(0)}} }\nu _{N+1}(\textrm{d}x) > - \frac{t^2}{8} \end{aligned}$$

and that

$$\begin{aligned} \int _{|x|>t} e^{-\frac{1}{2}(N+1)x^2 -\frac{(N+1)\mu x}{\sqrt{-D''(0)}} } \nu _{N+1}(\textrm{d}x) \le e^{-(N+1)t^2/4}. \end{aligned}$$

It follows that

$$\begin{aligned} \int _{|x|>t} e^{-\frac{1}{2} Nx^2 -\frac{N\mu x}{\sqrt{-D''(0)}} } \nu _{N+1}(\textrm{d}x) \le e^{-Nt^2/4}, \end{aligned}$$

and since \(\frac{1}{N} \log \frac{a_N}{c_N}\rightarrow 0\) as \(N\rightarrow \infty \),

$$\begin{aligned}&\lim _{N\rightarrow \infty } \frac{1}{N} \log \int _{-t}^t e^{-\frac{1}{2} Nx^2 -\frac{N\mu x}{\sqrt{-D''(0)}} } \nu _{N+1}(\textrm{d}x)\\&= \lim _{N\rightarrow \infty } \frac{1}{N} \log \int _{-\infty }^\infty (1-{\varvec{1}}\{|x|>t\})e^{-\frac{1}{2} Nx^2 -\frac{N\mu x}{\sqrt{-D''(0)}} } \nu _{N+1}(\textrm{d}x)\\&=\lim _{N\rightarrow \infty } \frac{1}{N} \log \int _{-\infty }^\infty e^{-\frac{1}{2} Nx^2 -\frac{N\mu x}{\sqrt{-D''(0)}} } \nu _{N+1}(\textrm{d}x). \end{aligned}$$

Note that

$$\begin{aligned} b_N&\ge e^{-\frac{t^2}{2}}\int _{-t}^{0} e^{-\frac{1}{2} Nx^2 -\frac{N\mu x}{\sqrt{-D''(0)}} } \nu _{N+1}(\textrm{d}x) + e^{-\frac{t^2}{2} -\frac{\mu t}{\sqrt{-D''(0)}}}\int _{0}^{t} e^{-\frac{1}{2} Nx^2 -\frac{N\mu x}{\sqrt{-D''(0)}} } \nu _{N+1}(\textrm{d}x)\\&\ge e^{-\frac{t^2}{2} -\frac{\mu t}{\sqrt{-D''(0)}}} \int _{-t}^t e^{-\frac{1}{2} Nx^2 -\frac{N\mu x}{\sqrt{-D''(0)}} } \nu _{N+1}(\textrm{d}x). \end{aligned}$$

Since

$$\begin{aligned} \lim _{N\rightarrow \infty } \frac{1}{N}\Big ( \log (a_N+c_N)- \log \int _{-t}^t e^{-\frac{1}{2} Nx^2 -\frac{N\mu x}{\sqrt{-D''(0)}} } \nu _{N+1}(\textrm{d}x)\Big )=0, \end{aligned}$$

we have \(\lim _{N\rightarrow \infty } \frac{1}{N} (\log ( a_{N} + c_{N}) - \log b_N)=0\). \(\quad \square \)

The following discussion is about Assumption IV.

Proof of Lemma 3.2

1. Since \(y\mapsto D'(y)\) is a strictly decreasing convex function and \(D'''(y)>0\) for any \(y>0\), \(|D''(y)|< \frac{D'(0)-D'(y)}{y} \). By assumption,

$$\begin{aligned} (\alpha \rho ^2)^2 = \frac{4D''(\rho ^2)^2 \rho ^4}{D(\rho ^2)-\frac{\rho ^2 D'(\rho ^2)^2}{D'(0)}} \le -\frac{8 D''(\rho ^2)^2 D''(0)}{ 3[D'(\rho ^2)-D'(0)]^2/\rho ^4}< -\frac{8}{3} D''(0). \end{aligned}$$

It follows that

$$\begin{aligned} (\alpha \rho ^2+\beta )\beta&< \sqrt{-\frac{2}{3} D''(0)} \sqrt{-\frac{8}{3} D''(0)} -\frac{2}{3} D''(0) =-2D''(0),\\ (\alpha \rho ^2+\beta )\alpha \rho ^2&< -\frac{8}{3} D''(0)+ \sqrt{-\frac{2}{3} D''(0)} \sqrt{-\frac{8}{3} D''(0)}=-4D''(0). \end{aligned}$$

2. We verify (3.10). If (3.11) holds, then \(y\mapsto \beta (y)^2\) is a decreasing function and (3.10) follows from Lemma 3.1.

3. By item 1, it suffices to check (3.10). Consider the function

$$\begin{aligned} f(y)=-D''(0)[D'(0)D(y)-D'(y)^2y]-\frac{3}{2}D'(0)[D'(y)-D'(0)]^2. \end{aligned}$$

Condition (3.10) is equivalent to \(f(y)\ge 0\). Note that \(f(0)=0\) and that

$$\begin{aligned} f'(y)= & {} [D'(0)-D'(y)][D'(0)D''(y)-D''(0)D'(y)]+2D''(y)(D''(0)D'(y)y\\{} & {} -D'(0)[D'(y)-D'(0)]). \end{aligned}$$

By convexity, \( \frac{D'(y)-D'(0)}{y} \le D''(y)\le 0\). If (3.12) holds, \(D''(0)D'(y)y -D'(0)[D'(y)-D'(0)]\le 0\) and

$$\begin{aligned} \frac{D'(y)}{D'(0)}-\frac{D''(y)}{D''(0)}\ge 0. \end{aligned}$$

Then (3.10) follows from here since \(D'(0)\ge D'(y)\) and we have \(f'(y)\ge 0\).

4. By Cauchy’s mean value theorem, condition (3.12) is equivalent to (3.13).

5. Direct calculation yields

$$\begin{aligned} \frac{\textrm{d}}{\textrm{d}y} \frac{D'(y)}{- D''(y)} =\frac{-D''(y)^2+D'''(y)D'(y)}{D''(y)^2}. \end{aligned}$$

Then (3.14) implies (3.13).

6. By the representation (3.7) of Thorin–Bernstein functions, we have

$$\begin{aligned} D''(x)= -\int _{(0,\infty )} \frac{1}{(x+t)^2} \sigma (\textrm{d}t), \qquad D'''(x)= \int _{(0,\infty )} \frac{2}{(x+t)^3} \sigma (\textrm{d}t). \end{aligned}$$

By the Cauchy–Schwarz inequality, we have

$$\begin{aligned} 2D''(x)^2\le D'(x)D'''(x). \end{aligned}$$

It follows that \(\frac{\textrm{d}}{\textrm{d}y} \frac{D'(y)}{- D''(y)} \ge 1\) and (3.14) holds. \(\quad \square \)

If \(A=0\) in the representation (1.2), using the Cauchy–Schwarz inequality, we can see

$$\begin{aligned} \frac{\textrm{d}}{\textrm{d}y} \frac{D'(y)}{- D''(y)} =\frac{-D''(y)^2+D'''(y)D'(y)}{D''(y)^2}\ge 0, \end{aligned}$$

compared with (3.14). It is easy to check that for any \({\varepsilon }>0, 0<\gamma <1\), our major examples \(D(r)=\log (1+r/{\varepsilon })\) and \(D(r)=(r+{\varepsilon })^\gamma -{\varepsilon }^{\gamma }\) satisfy (3.13). With more work, one can check that these functions satisfy (3.11).

On the other hand, according to [SSV12, p. 332],

$$\begin{aligned} D(x)=\frac{\sqrt{x}\sinh ^2(\sqrt{x})}{\sinh (2\sqrt{x})} \end{aligned}$$

is a complete Bernstein function which is not Thorin–Bernstein. One can check (at least numerically) that it violates (3.13) but still verifies (3.10). We suspect that (3.8) and (3.9) always hold for any structure function D. The following shows that this is the case at least in a neighborhood of 0.

Lemma B.2

Assume \(A=0\) in (1.2). We have

$$\begin{aligned} \lim _{y\rightarrow 0+} \frac{\textrm{d}}{\textrm{d}y} [\alpha (y) y+\beta (y)]\beta (y)&<0, \\ \lim _{y\rightarrow 0+} \frac{\textrm{d}}{\textrm{d}y} [\alpha (y) y+\beta (y)]\alpha (y)y&<0. \end{aligned}$$

Consequently, there exists \(\delta >0\) such that \(-2D''(0)>[\alpha (y) y+\beta (y)]\beta (y)\) and \(-4D''(0)>[\alpha (y) y+\beta (y)]\alpha (y)y\) for \(y\in (0,\delta )\).

Proof

We only prove the first inequality as the second is similar. Write

$$\begin{aligned} (\alpha y+\beta )\beta = \frac{[2D''(y)+\frac{D'(y)-D'(0)}{y}] \frac{D'(y)-D'(0)}{y}}{\frac{D(y)}{y^2}-\frac{D'(y)^2}{D'(0)y}} =:\frac{T}{B}. \end{aligned}$$

Since \([(\alpha y+\beta )\beta ]'=\frac{T'B-B'T}{B^2}\) and \(\lim _{y\rightarrow 0+} B=-\frac{3}{2} D''(0) \ne 0\), it suffices to show that \(\lim _{y\rightarrow 0+}T'B-B'T<0\). By calculation, we have \(\lim _{y\rightarrow 0+} T= 3D''(0)^2\) and

$$\begin{aligned} T'&= [2D'''(y) +\frac{D''(y)y-D'(y) +D'(0)}{y^2}] \frac{D'(y)-D'(0)}{y}\\&\quad ~ +[2D''(y)+\frac{D'(y)-D'(0)}{y}] \frac{D''(y)y-D'(y) +D'(0)}{y^2},\\ B'&=\frac{D'(0)D'(y)y-2D'(0)D(y)-2D'(y)D''(y)y^2+y D'(y)^2}{D'(0) y^3}. \end{aligned}$$

After some tedious computation, we find \(\lim _{y\rightarrow 0+} T'=4D'''(0) D''(0)\) and \(\lim _{y\rightarrow 0+} B'=-\frac{5}{6} D'''(0)-\frac{D''(0)^2}{D'(0)}\). Then

$$\begin{aligned} \lim _{y\rightarrow 0+} T'B-B'T = D''(0)^2 \Big [\frac{3D''(0)^2}{D'(0)}-\frac{7}{2} D'''(0)\Big ]. \end{aligned}$$

By the Cauchy–Schwarz inequality,

$$\begin{aligned} D''(0)^2 = \Big (\int _0^\infty t^4 \nu (\textrm{d}t) \Big )^2\le \int _0^\infty t^2 \nu (\textrm{d}t) \int _0^\infty t^6 \nu (\textrm{d}t)=D'(0)D'''(0). \end{aligned}$$

From here the conclusion follows. \(\quad \square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auffinger, A., Zeng, Q. Complexity of Gaussian Random Fields with Isotropic Increments. Commun. Math. Phys. 402, 951–993 (2023). https://doi.org/10.1007/s00220-023-04739-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-023-04739-0

Navigation