Skip to main content
Log in

A Toy-Model Study of the Grazing Collisions in the Kinetic Theory

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

As a toy model study for the grazing collision effect in the Boltzmann equation, a spatially homogeneous problem for the two-dimensional Lorentz gas from the initial data with a jump discontinuity is investigated. The collision kernel of our model has the same angular singularity as the Boltzmann collision kernel. Thanks to the simplicity of the model, the jump propagation and its regularization are clearly seen, depending on whether the collision cross-section is finite or infinite. Three types of behavior are observed: a jump propagation, a jump propagation accompanied with a divergent derivative, and no jump propagation. For the model with a critical parameter, the switching from the second type to the last is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. For smooth \(f\), we have

    $$\begin{aligned} f(\cdot ,\cdot ,\varvec{\alpha _{*}})-f(\cdot ,\cdot ,\varvec{\alpha })&\sim -2\big (\varvec{\beta }\cdot \varvec{\alpha }\big )\beta _{i}\partial f/\partial \alpha _{i}\\&=-2\big (\varvec{\beta }\cdot \varvec{\alpha }\big )\big [\beta _{i}-\big (\varvec{\beta }\cdot \varvec{\alpha }\big )\alpha _{i}\big ]\partial f/\partial \alpha _{i}-2\big (\varvec{\beta }\cdot \varvec{\alpha }\big )^{2}\alpha _{i}\partial f/\partial \alpha _{i}, \end{aligned}$$

    for \(|\varvec{\beta }\cdot \varvec{\alpha }|\sim 0\) by the Taylor expansion. Since the derivatives of \(f\) are evaluated at \(\varvec{\alpha }\), they are independent of \(\varvec{\beta }\). As a result, the first term of the most right-hand side does not contribute to the integration with respect to \(\varvec{\beta }\). The last term reduces the degree of singularity from \(|\varvec{\beta }\cdot \varvec{\alpha }|^{\gamma }\) to \(|\varvec{\beta }\cdot \varvec{\alpha }|^{\gamma +2}\), allowing the integration down to \(\gamma =-3\).

  2. For every fixed \(\gamma \) and \(\epsilon (>0)\), we have a large integer \(n\) such that

    $$\begin{aligned} \big |\nu _{\gamma ,\epsilon }-b_{\gamma ,\epsilon }^{n}\big |=4\big |\int _{\epsilon /2}^{\pi /2}(1-2\sin ^{2}n\varphi )\,\big |\sin \varphi \big |^{\gamma }d\varphi \big |=4\big |\int _{\epsilon /2}^{\pi /2}\cos 2n\varphi \,\big |\sin \varphi \big |^{\gamma }d\varphi \big |\\ =\frac{2}{n}\big |\int _{n\epsilon }^{n\pi }\cos \phi \,\big |\sin \frac{\phi }{2n}\big |^{\gamma }d\phi \big |=\frac{2}{n}\big |\int _{n\epsilon }^{n\epsilon +2\pi }\cos \phi \,\big |\sin \frac{\phi }{2n}\big |^{\gamma }d\phi \big |\\ \le \frac{2}{n}\int _{n\epsilon }^{n\epsilon +2\pi }d\phi =\frac{4\pi }{n}\rightarrow 0,\quad \hbox {as }n\rightarrow \infty . \end{aligned}$$
  3. In the case of \(\gamma =-14/12\), the variation around \(\theta =0\) is steeper and more terms should be retained for the practical convergence. In Fig. 6 that appears later, the series is truncated at \(m=160,000\) (not \(16,000\)) for \(\gamma =-6/4\). See also the next paragraph and Sect. 5.1.

  4. As will be clear in Sect. 5.1, the truncation at \(m=5000\) is not enough because \(\theta \)-derivative diverges. Required number of terms is larger than that for \(\gamma =-14/12\).

  5. We shall prove \(\Psi (n+\frac{1}{2})>\ln n\) for any positive integer \(n\). The case \(n=1\) is obvious. For \(n\ge 2\), we use that

    1. 1.

      For any positive integer \(n\), \(\Psi (n+\frac{1}{2})=-\gamma _{e}-2\ln 2+2\sum _{k=0}^{n-1}\frac{1}{2k+1}.\) [16, 17]

    2. 2.

      Since \(1/x\) is downward convex, the trapezoidal formula bounds its integral from above:

      $$\begin{aligned} \frac{1}{2}\left( 1+2\sum _{k=2}^{2n-1}\frac{1}{k}+\frac{1}{2n}\right) \ge \int _{1}^{2n}\frac{dx}{x}=\ln n+\ln 2. \end{aligned}$$

    Then,

    $$\begin{aligned} \Psi (n+\frac{1}{2})-\ln n&\ge -\gamma _{e}-\ln 2+2\sum _{k=0}^{n-1}\frac{1}{2k+1}-\frac{1}{2}\left( 1+2\sum _{k=2}^{2n-1}\frac{1}{k}+\frac{1}{2n}\right) \\&=\frac{2n+1}{4n(2n-1)}-\gamma _{e}-\ln 2+\frac{1}{2}+\sum _{k=1}^{n-1}\frac{1}{2k(2k-1)}. \end{aligned}$$

    Some manipulations from the first to the second line are omitted here. On the most right-hand side, the first term is positive, and the remainder is \(-\gamma _{e}-\ln 2+1(>0)\) when \(n=2\) and monotonically increases with \(n\). The desired inequality is thus obtained.

  6. \(\Psi (n+\frac{1}{2})-\ln n>0\) is proved in footnote 5 for any positive integer \(n\), where \(n\) corresponds to \(2m+1\). To prove \(\Psi (n+\frac{1}{2})-\ln n\le 1/n\), we use the formula for \(\Psi \) [16, 17] that

    $$\begin{aligned} \Psi (x)=\ln x-\frac{1}{2x}-2\int _{0}^{\infty }\frac{t}{(t^{2}+x^{2})(e^{2\pi t}-1)}dt,\quad \hbox {for }x>0. \end{aligned}$$

    Then, for \(F\) defined by \(F(x)\equiv 1/x-\Psi (x+\frac{1}{2})+\ln x\) (\(x>0\)), we have

    $$\begin{aligned} F(x)&=\frac{1}{x}+\ln x-\ln (x+\frac{1}{2})+\frac{1}{2x+1}+2\int _{0}^{\infty }\frac{t}{(t^{2}+(x+\frac{1}{2})^{2})(e^{2\pi t}-1)}dt\\&\ge \frac{1}{x}+\ln x-\ln (x+\frac{1}{2})+\frac{1}{2x+1}\equiv G(x)\rightarrow 0\quad \hbox {as }x\rightarrow \infty . \end{aligned}$$

    By the direct calculation of \(dG/dx\), \(G(x)\) is found to be monotonically decreasing for \(x>0\); thus we have \(F(x)\ge G(x)\ge 0\) for \(x>0\).

References

  1. Cercignani, C.: The Boltzmann Equations and its Applications. Springer, Berlin (1998)

    Google Scholar 

  2. Sone, Y.: Molecular Gas Dynamics. Birkhäuser, Boston (2007)

    Book  MATH  Google Scholar 

  3. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford (1994)

    Google Scholar 

  4. Sone, Y., Sugimoto, H.: Strong evaporation from a plane condensed phase. In: Meier, G.E.A., Thompson, P.A. (eds.) Adiabatic Waves and in Liquid-Vapor Systems, pp. 293–304. Springer, Berlin (1990)

    Chapter  Google Scholar 

  5. Sugimoto, H., Sone, Y.: Numerical analysis of steady flows of a gas evaporating from its cylindrical condensed phase on the basis of kinetic theory. Phys. Fluids A 4, 419–440 (1992)

    Article  ADS  Google Scholar 

  6. Sone, Y., Takata, S.: Discontinuity of the velocity distribution function in a rarefied gas around a convex body and the S layer at the bottom of the Knudsen layer. Transp. Theory Stat. Phys. 21, 501–530 (1992)

    Article  MATH  ADS  Google Scholar 

  7. Takata, S., Sone, Y., Aoki, K.: Numerical analysis of a uniform flow of a rarefied gas past a sphere on the basis of the Boltzmann equation for hard-sphere molecules. Phys. Fluids A 5, 716–737 (1993)

    Article  MATH  ADS  Google Scholar 

  8. Desvillettes, L.: About the regularizing properties of the non-cut-off Kac equation. Commun. Math. Phys. 168, 417–440 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. 1. Elsevier, Amsterdam (2002)

    Google Scholar 

  10. Desvillettes, L., Graham, C., Méléard, S.: Probabilistic interpretation and numerical approximation of a Kac equation without cutoff. Stoch. Process. Appl. 84, 15–135 (1999)

    Article  Google Scholar 

  11. Lucquin-Desreux, B., Mancini, S.: A finite element approximation of grazing collisions. Transp. Theory Stat. Phys. 32, 293–319 (2003)

    Article  MathSciNet  Google Scholar 

  12. Pareschi, L., Toscani, G., Villani, C.: Spectral methods for the non cut-off Boltzmann equation and numerical grazing collision limit. Numer. Math. 93, 523–548 (2003)

    Article  MathSciNet  Google Scholar 

  13. Alexandre, R., Morimoto, Y., Ukai, S., Xu, C.-J., Yang, T.: Regularizing effect and local existence for the non-cutoff Boltzmann equation. Arch. Ration. Mech. Anal. 198, 39–123 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Le Bellac, M., Mortessagne, F., Batrouni, G.G.: Equilibrium and Non-Equilibrium Statistical Thermodynamics. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  15. Takata, S.: Invitation to the kinetic theory. Nagare 27, 387–396 (2008). (in Japanese)

    Google Scholar 

  16. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  17. Moriguchi, S., Udagawa, K., Hitotumatsu, S.: Iwanami Sugaku Kousiki III. Iwanami, Tokyo (1960). (in Japanese)

    Google Scholar 

  18. Folland, G.B.: Fourier Analysis and Its Applications. AMS, Providence (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Takata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takata, S. A Toy-Model Study of the Grazing Collisions in the Kinetic Theory. J Stat Phys 160, 770–792 (2015). https://doi.org/10.1007/s10955-015-1259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1259-0

Keywords

Mathematics Subject Classification

Navigation