Skip to main content
Log in

Products of Independent Elliptic Random Matrices

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For fixed \(m > 1\), we study the product of \(m\) independent \(N \times N\) elliptic random matrices as \(N\) tends to infinity. Our main result shows that the empirical spectral distribution of the product converges, with probability \(1\), to the \(m\)-th power of the circular law, regardless of the joint distribution of the mirror entries in each matrix. This leads to a new kind of universality phenomenon: the limit law for the product of independent random matrices is independent of the limit laws for the individual matrices themselves. Our result also generalizes earlier results of Götze–Tikhomirov (On the asymptotic spectrum of products of independent random matrices, available at http://arxiv.org/abs/1012.2710) and O’Rourke–Soshnikov (J Probab 16(81):2219–2245, 2011) concerning the product of independent iid random matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akemann, G., Burda, Z.: Universal microscopic correlation functions for products of independent Ginibre matrices. J. Phys. A 45, 465201 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  2. Akemann, G., Burda, Z., Kieburg, M.: Universal distribution of Lyapunov exponents for products of Ginibre matrices. Available at arXiv:1406.0803

  3. Akemann, G., Ipsen, J.R., Kieburg, M.: Products of rectangular random matrices: singular values and progressive scattering. Phys. Rev. E 88, 052118 (2013)

    Article  ADS  Google Scholar 

  4. Akemann, G., Ipsen, J.R., Strahov, E.: Permanental processes from products of complex and quaternionic induced Ginibre ensembles. Available at arXiv:1404.4583

  5. Akemann, G., Kieburg, M., Wei, L.: Singular value correlation functions for products of Wishart random matrices. J. Phys. A 46, 275205 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  6. Akemann, G., Strahov, E.: Hole probabilities and overcrowding estimates for products of complex Gaussian matrices. J. Stat. Phys. 151(6), 987–1003 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Anderson, G.: Convergence of the largest singular value of a polynomial in independent Wigner matrices. Ann. Probab. 41(3B), 2103–2181 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bai, Z.D.: Circular law. Ann. Probab. 25, 494–529 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bai, Z.D., Silverstein, J.: Spectral Analysis of Large Dimensional Random Matrices. Mathematics Monograph Series 2. Science Press, Beijing (2006)

    Google Scholar 

  10. Bordenave, C.: On the spectrum of sum and product of non-hermitian random matrices. Electron. Commun. Probab. 16, 104–113 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bordenave, C., Chafaï, D.: Around the circular law. Probab. Surv. 9, 1–89 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Biane, P., Lehner, F.: Computation of some examples of Brown’s spectral measure in free probability. Colloq. Math. 90(2), 181–211 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Burda, Z., Janik, R.A., Waclaw, B.: Spectrum of the product of independent random Gaussian matrices. Phys. Rev. E 81, 041132 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  14. Burda, Z., Jarosz, A., Livan, G., Nowak, M.A., Swiech, A.: Eigenvalues and singular values of products of rectangular Gaussian random matrices. Phys. Rev. E 82, 061114 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  15. Burda, Z.: Free products of large random matrices—a short review of recent developments. Available at arXiv:1309.2568

  16. Burkholder, D.L.: Distribution function inequalities for martingales. Ann. Probab. 1, 19–42 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  17. Edelman, A.: The Probability that a random real Gaussian matrix has \(k\) real eigenvalues, related distributions, and the circular Law. J. Multivar. Anal. 60, 203–232 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Forrester, P.J.: Lyapunov exponents for products of complex Gaussian random matrices. Available at arXiv:1206.2001

  19. Forrester, P.J.: Probability of all eigenvalues real for products of standard Gaussian matrices. Available at arXiv:1309.7736

  20. Ginibre, J.: Statistical ensembles of complex, quaternion and real matrices. J. Math. Phys. 6, 440–449 (1965)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Girko, V.L.: Circular law. Theory Probab. Appl. 29, 694–706 (1984)

    Article  MathSciNet  Google Scholar 

  22. Girko, V.L.: The strong circular law, twenty years later. II. Random Oper. Stoch. Equ. 12(3), 255–312 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Girko, V.L.: Elliptic law. Theory Probab. Appl. 30(4), 677–690 (1985)

    Article  Google Scholar 

  24. Girko, V.L.: The elliptic law: ten years later I. Random Oper. Stoch. Equ. 3(3), 257–302 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Goldsheid, I., Khoruzhenko, B.A.: The Thouless formula for random non-Hermitian Jacobi matrices. Isr. J. Math. 148, 331–346 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Götze, F., Naumov, A., Tikhomirov, T.: On one generalization of the elliptic law for random matrices. Available at arXiv:1404.7013

  27. Götze, F., Tikhomirov, T.: The circular law for random matrices. Ann. Probab. 38(4), 1444–1491 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Götze, F., Tikhomirov, T.: On the asymptotic spectrum of products of independent random matrices. Available at arXiv:1012.2710

  29. Haagerup, U., Larsen, F.: Brown’s spectral distribution measure for R-diagonal elements in finite von Neumann algebras. J. Funct. Anal. 176(2), 331–367 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Haagerup, U., Thorbjørnsen, S.: A new application of random matrices: \(Ext(C_{red}^*(F_2))\) is not a group. Ann. Math. (2) 162, 711–755 (2005)

    Article  MATH  Google Scholar 

  31. Helton, J., Far, R., Speicher, R.: Operator-valued semicircular elements: solving a quadratic matrix equation with positivity constraints. Int. Math. Res. Not. (2007)

  32. Hiai, F., Petz, D.: The Semicircle Law, Free Random Variables and Entropy, Mathematical Surveys and Monographs, 77. American Mathematical Society, Providence, RI (2000)

    Google Scholar 

  33. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  34. Larsen, F.: Powers of R-diagonal elements. J. Oper. Theory 47, 197–212 (2002)

    MATH  Google Scholar 

  35. Mehta, M.L.: Random Matrices and the Statistical Theory of Energy Levels. Academic Press, New York (1967)

    MATH  Google Scholar 

  36. Mehta, M.L.: Random Matrices, 3rd edn. Elsevier/Academic Press, Amsterdam (2004)

    MATH  Google Scholar 

  37. Naumov, A.: Elliptic law for real random matrices. Available at arXiv:1201.1639 [math.PR]

  38. Nguyen, H.: On the least singular value of random symmetric matrices. Electron. J. Probab. 17(53), 1–19 (2012)

    Article  MathSciNet  Google Scholar 

  39. Nguyen, H.: personal communications, September 2014

  40. Nguyen, H., O’Rourke, S.: The elliptic law. Available at arXiv:1208.5883 [math.PR]

  41. Nguyen, H., O’Rourke, S.: On the concentration of random multilinear forms and the universality of random block matrices. Available at arXiv:1309.4815

  42. Nica A., Speicher, R.: R-diagonal pairs—a common approach to Haar unitaries and circular elements. In: D. Voiculescu (ed) Fields Institute Communications, vol. 12, pp. 149–188, AMS (1997)

  43. O’Rourke, S., Renfrew, D.: Low rank perturbations of large elliptic random matrices, submitted. Available at arXiv:1309.5326

  44. O’Rourke, S., Soshnikov, A.: Products of independent non-Hermitian random matrices. Electron. J. Probab. 16(81), 2219–2245 (2011)

    MATH  MathSciNet  Google Scholar 

  45. Pan, G., Zhou, W.: Circular law, extreme singular values and potential theory. J. Multivar. Anal. 101, 645–656 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  46. Tao, T., Vu, V.: Random matrices: the circular law. Commun. Contemp. Math. 10, 261–307 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  47. Tao, T., Vu, V.: From the Littlewood-Offord problem to the circular law: universality of the spectral distribution of random matrices. Bull. Am. Math. Soc. (N.S.) 46(3), 377–396 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  48. Tao, T., Vu, V.: Random matrices: universality of ESDs and the circular law. Ann. Probab. 38(5), 2023–2065 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  49. Tao, T., Vu, V.: Random matrices: universality of local eigenvalue statistics. Acta Math. 206, 127–204 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  50. Wigner, E.P.: On the distributions of the roots of certain symmetric matrices. Ann. Math. 67, 325–327 (1958)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

S. O’Rourke has been supported by Grant AFOSAR-FA-9550-12-1-0083. D. Renfrew is partly supported by NSF Grant DMS-0838680. A. Soshnikov has been supported in part by NSF Grant DMS-1007558. V. Vu is supported by research Grants DMS-0901216, DMS-1307797, and AFOSAR-FA-9550-12-1-0083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean O’Rourke.

Appendix: Truncation

Appendix: Truncation

This section contains somewhat standard proofs of the truncation results in Sect. 6.1.

Proof of Lemma 6.1

We begin by observing that

$$\begin{aligned} {{\mathrm{Var}}}(\tilde{\xi }_i^{(N)}) = \mathbb {E}|\tilde{\xi }_i^{(N)}|^2 \le \mathbb {E}|\xi _i \mathbf {1}_{\{|\xi _i| \le N^\delta \}}|^2 \le 1 \end{aligned}$$
(8.1)

for \(i=1,2\). We also have

$$\begin{aligned} \left| 1 - {{\mathrm{Var}}}(\tilde{\xi }_i^{(N)}) \right| \le 2 \mathbb {E}|\xi _i|^2 \mathbf {1}_{\{|\xi _i| > N^\delta \}} \le 2 \frac{M_{2+\tau }}{N^{\delta \tau }}, \end{aligned}$$

which verifies property (ii).

Thus, we take \(N_0\) sufficiently large such that

$$\begin{aligned} {{\mathrm{Var}}}(\tilde{\xi }_i^{(N)}) \ge 1/2 \end{aligned}$$
(8.2)

for all \(i=1,2\) and \(N \ge N_0\). Then (i) follows by construction and the bound in (8.2).

It remains to prove (iii). Set \(\tilde{\rho }^{(N)} := \mathbb {E}[ \tilde{\xi }_1^{(N)} \tilde{\xi }_2^{(N)}]\). Then by the Cauchy-Schwarz inequality and (8.1), we have

$$\begin{aligned} |\tilde{\rho }^{(N)} - \rho |&\le \sqrt{ \mathbb {E}|\xi _1|^2 \mathbf {1}_{\{|\xi _1| > N^\delta \}}} \sqrt{ \mathbb {E}|\xi _2|^2 \mathbf {1}_{\{|\xi _2| > N^\delta \}}} + \sum _{i=1}^2 \left( \sqrt{ \mathbb {E}|\xi _i|^2 \mathbf {1}_{\{|\xi _i| > N^\delta \}}} \right. \\&\quad \left. +\, \mathbb {E}|\xi _i|^2 \mathbf {1}_{\{|\xi _i| > N^\delta \}} \right) \le 5 \frac{M_{2+\tau }}{N^{\delta \tau /2}}. \end{aligned}$$

By property (ii) and (8.1), we obtain

$$\begin{aligned} |\hat{\rho }^{(N)} - \tilde{\rho }^{(N)}|&\le \mathbb {E}|\tilde{\xi }_1^{(N)} \tilde{\xi }_2^{(N)}| \left| \frac{1}{\sqrt{ {{\mathrm{Var}}}(\tilde{\xi }_1^{(N)}) {{\mathrm{Var}}}(\tilde{\xi }_2^{(N)})} } - 1 \right| \\&\le 2 \left| \sqrt{ {{\mathrm{Var}}}(\tilde{\xi }_1^{(N)}) {{\mathrm{Var}}}(\tilde{\xi }_2^{(N)})} - 1 \right| \\&\le 2 \left| {{\mathrm{Var}}}(\tilde{\xi }_1^{(N)}) {{\mathrm{Var}}}(\tilde{\xi }_2^{(N)}) - 1 \right| \\&\le 2 \left| {{\mathrm{Var}}}(\tilde{\xi }_1^{(N)}) - 1 \right| + 2 \left| {{\mathrm{Var}}}(\tilde{\xi }_2^{(N)}) - 1 \right| \\&\le 8 \frac{M_{2+\tau }}{N^{\delta \tau }}. \end{aligned}$$

Combining the bounds above completes the proof of property (iii). \(\square \)

Proof of Lemma 6.2

We begin with (6.2). By the block structure of \(\mathbf {Y}_N\), it suffices to show that a.s.

$$\begin{aligned} \limsup _{N \rightarrow \infty } \frac{1}{N^2} \Vert \mathbf {Y}_{N,k} \Vert _2^2 < \infty \end{aligned}$$
(8.3)

for \(k = 1,\ldots ,m\). We now decompose

$$\begin{aligned} \Vert \mathbf {Y}_{N,k} \Vert _2^2&= \sum _{1 \le i < j \le N} | (\mathbf {Y}_{N,k})_{ij} |^2 + \sum _{1 \le j < i \le N} | (\mathbf {Y}_{N,k})_{ij} |^2 + \sum _{i=1}^N | (\mathbf {Y}_{N,k})_{ii} |^2, \end{aligned}$$

where the summands in each sum are iid copies of \(\xi _{k,1}, \xi _{k,2}\), and \(\zeta _k\), respectively. Thus, applying the law of large numbers to each sum yields (8.3).

For (6.3), we decompose

$$\begin{aligned} \Vert \hat{\mathbf {Y}}_N \Vert _2^2&= \sum _{k=1}^m \Vert \hat{\mathbf {Y}}_{N,k} \Vert ^2_2 \\&\le 2 \sum _{k=1}^m \sum _{i,j=1}^N | (\tilde{\mathbf {Y}}_{N,k})_{ij} |^2 \\&\le 4 \sum _{k=1}^m \sum _{i,j=1}^N \left( |(\mathbf {Y}_{N,k})_{ij} |^2 + \mathbb {E}|(\mathbf {Y}_{N,k})_{ij} |^2\right) \\&\le 4 \left( \Vert \mathbf {Y}_N \Vert _2^2 + \mathbb {E}\Vert \mathbf {Y}_N \Vert _2^2 \right) \end{aligned}$$

by Lemma 6.1. As the atom variables have finite variance, (6.3) follows from (6.2).

It remains to prove (6.4). By the triangle inequality and the block structure of \(\mathbf {Y}_N\) and \(\hat{\mathbf {Y}}_N\), it suffices to show that almost surely, for \(k=1,\ldots ,m\),

$$\begin{aligned} \lim _{N \rightarrow \infty } \frac{N^{\delta \tau }}{N^2} \Vert \mathbf {Y}_{N,k} - \tilde{\mathbf {Y}}_{N,k} \Vert _2^2 = 0 \quad \text {and} \quad \lim _{N \rightarrow \infty } \frac{N^{\delta \tau }}{N^2} \Vert \tilde{\mathbf {Y}}_N - \hat{\mathbf {Y}}_N \Vert _2^2 = 0. \end{aligned}$$
(8.4)

Fix \(1 \le k \le m\). Then we have

$$\begin{aligned} \Vert \mathbf {Y}_{N,k} - \tilde{\mathbf {Y}}_{N,k} \Vert _2^2 \le 2 \sum _{i,j=1}^N \left( |(\mathbf {Y}_{N,k})_{ij}|^2 \mathbf {1}_{\{|(\mathbf {Y}_{N,k})_{ij}| > N^\delta \}} + \mathbb {E}|(\mathbf {Y}_{N,k})_{ij}|^2 \mathbf {1}_{\{|(\mathbf {Y}_{N,k})_{ij}| > N^\delta \}}\right) . \end{aligned}$$

Since \(\delta \tau < 1\), we have that a.s.

$$\begin{aligned} \limsup _{N \rightarrow \infty } \frac{N^{\delta \tau }}{N^2}&\sum _{i=1}^N \left( |(\mathbf {Y}_{N,k})_{ii}|^2 \mathbf {1}_{\{|(\mathbf {Y}_{N,k})_{ij}| > N^\delta \}} + \mathbb {E}|(\mathbf {Y}_{N,k})_{ii}|^2 \right) \\&\le \limsup _{N \rightarrow \infty } \frac{N^{\delta \tau } }{N^2} \sum _{i=1}^N \left( |(\mathbf {Y}_{N,k})_{ii}|^2 + \mathbb {E}|(\mathbf {Y}_{N,k})_{ii}|^2 \right) = 0 \end{aligned}$$

by the law of large numbers. On the other hand,

$$\begin{aligned} \frac{N^{\delta \tau }}{N^2}&\sum _{1 \le i < j \le N} \left( |(\mathbf {Y}_{N,k})_{ij}|^2 \mathbf {1}_{\{|(\mathbf {Y}_{N,k})_{ij}| > N^\delta \}} + \mathbb {E}|(\mathbf {Y}_{N,k})_{ij}|^2 \mathbf {1}_{\{|(\mathbf {Y}_{N,k})_{ij}| > N^\delta \}} \right) \\&\le \frac{1}{N^2} \sum _{1 \le i < j \le N} \left( |(\mathbf {Y}_{N,k})_{ij}|^{2+\tau } \mathbf {1}_{\{|(\mathbf {Y}_{N,k})_{ij}| > N^\delta \}} + \mathbb {E}|(\mathbf {Y}_{N,k})_{ij}|^{2+\tau } \mathbf {1}_{\{|(\mathbf {Y}_{N,k})_{ij}| > N^\delta \}} \right) . \end{aligned}$$

By the dominated convergence theorem

$$\begin{aligned} \limsup _{N \rightarrow \infty } \frac{1}{N^2}&\mathbb {E}|(\mathbf {Y}_{N,k})_{ij}|^{2+\tau } \mathbf {1}_{\{|(\mathbf {Y}_{N,k})_{ij}| > N^\delta \}} \le \limsup _{N \rightarrow \infty } \mathbb {E}|\xi _{k,1}|^{2+\tau } \mathbf {1}_{\{|\xi _{k,1}| > N^{\delta }\}} = 0. \end{aligned}$$

Furthermore, by the law of large numbers, we have a.s.

$$\begin{aligned} \limsup _{N \rightarrow \infty } \frac{1}{N^2} \sum _{1 \le i < j \le N} |(\mathbf {Y}_{N,k})_{ij}|^{2+\tau } \mathbf {1}_{\{|(\mathbf {Y}_{N,k})_{ij}| > N^\delta \}} = 0. \end{aligned}$$

The sum involving the indices \(1 \le j < i \le N\) is handled similarly, and hence we conclude that a.s.

$$\begin{aligned} \lim _{N \rightarrow \infty } \frac{N^{\delta \tau }}{N^2} \Vert \mathbf {Y}_{N,k} - \tilde{\mathbf {Y}}_{N,k} \Vert _2^2 = 0. \end{aligned}$$

We now consider the second limit in (8.4). By Lemma 6.1, we obtain

$$\begin{aligned} \Vert \tilde{\mathbf {Y}}_{N} - \hat{\mathbf {Y}}_N \Vert _2^2&= \sum _{k=1}^m \sum _{i,j=1}^N |(\hat{\mathbf {Y}}_{N,k})_{ij}|^2 \left| \sqrt{ {{\mathrm{Var}}}( (\tilde{\mathbf {Y}}_{N,k})_{ij}) } - 1 \right| ^2 \\&\le \sum _{k=1}^m \sum _{i,j=1}^N |(\hat{\mathbf {Y}}_{N,k})_{ij}|^2 | {{\mathrm{Var}}}( (\tilde{\mathbf {Y}}_{N,k})_{ij}) - 1 |^2 \\&\le \frac{1}{N^{2 \delta \tau }} \sum _{k=1}^m \sum _{i,j=1}^N |(\hat{\mathbf {Y}}_{N,k})_{ij}|^2 \\&\le \frac{1}{N^{2 \delta \tau }} \Vert \hat{\mathbf {Y}}_{N} \Vert _2^2. \end{aligned}$$

Thus, by (6.3), a.s. we have

$$\begin{aligned} \limsup _{N \rightarrow \infty } \frac{N^{\delta \tau }}{N^2} \Vert \tilde{\mathbf {Y}}_{N} - \hat{\mathbf {Y}}_N \Vert _2^2 \le \limsup _{N \rightarrow \infty } \frac{1}{N^{2 + \delta \tau }} \Vert \hat{\mathbf {Y}}_N \Vert _2^2 = 0, \end{aligned}$$

and the proof of the lemma is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Rourke, S., Renfrew, D., Soshnikov, A. et al. Products of Independent Elliptic Random Matrices. J Stat Phys 160, 89–119 (2015). https://doi.org/10.1007/s10955-015-1246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1246-5

Keywords

Navigation