Skip to main content
Log in

On the Transfer of Energy Towards Infinity in the Theory of Weak Turbulence for the Nonlinear Schrödinger Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the mathematical properties of a kinetic equation, derived in Escobedo and Velázquez (arXiv:1305.5746v1 [math-ph]), which describes the long time behaviour of solutions to the weak turbulence equation associated to the cubic nonlinear Schrödinger equation. In particular, we give a precise definition of weak solutions and prove global existence of solutions for all initial data with finite mass. We also prove that any nontrivial initial datum yields the instantaneous onset of a condensate, by which we mean that for any nontrivial solution the mass of the origin is strictly positive for any positive time. Furthermore we show that the only stationary solutions with finite total measure are Dirac masses at the origin. We finally construct solutions with finite energy, where the energy is transferred to infinity in a self-similar manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benedetto, D., Castella, F., Esposito, R., Pulvirenti, M.: From the N-body Schrödinger equation to the quantum Boltzmann equation: a term-by-term convergence result in the weak coupling regime. Commun. Math. Phys. 277, 1–44 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2011)

    MATH  Google Scholar 

  3. Duistermaat, J.J., Kolk, J.A.C.: Distributions, Theory and Applications. Birkhäuser, Basel (2010)

    MATH  Google Scholar 

  4. Dunford, N., Schwartz, J.T.: Linear Operators, Part I. General Theory. Wiley, New York (1963)

    Google Scholar 

  5. Düring, G., Josserand, C., Rica, S.: Weak turbulence for a vibrating plate: can one hear a Kolmogorov spectrum? Phys. Rev. Lett. 97, 025503 (2006)

    Article  ADS  Google Scholar 

  6. Dyachenko, S., Newell, A.C., Pushkarev, A., Zakharov, V.E.: Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation. Phys. D 57, 96–160 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Edwards, R.E.: Functional Analysis. Theory and Applications. Holt, Rinehart and Winston Inc., New York (1965)

    MATH  Google Scholar 

  8. Escobedo, M., Mischler, S., Rodriguez Ricard, M.: On self-similarity and stationary problem for fragmentation and coagulation models. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 99–125 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Escobedo, M., Velázquez, J.J.L.: Finite time blow-up and condensation for the bosonic Nordheim equation. Invent. Math. (2014). doi:10.1007/s00222-014-0539-7

  10. Escobedo, M., Velázquez, J.J.L.: On the Theory of Weak Turbulence for the Nonlinear Schrödinger Equation. Memoirs AMS (to appear) arXiv:1305.5746v1 [math-ph]

  11. Fournier, N., Laurençot, P.: Existence of self-similar solutions to Smoluchowski’s coagulation equation. Commun. Math. Phys. 256, 589–609 (2005)

    Article  ADS  MATH  Google Scholar 

  12. Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann: Hard Spheres and Short-Range Potentials. EMS, Zurich Lectures in Advanced Mathematics (2014)

  13. Gamba, I.M., Panferov, V., Villani, C.: On the Boltzmann equation for diffusively excited granular media. Commun. Math. Phys. 246, 503–541 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge, UK (1952)

  15. Hasselmann, K.: On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory. J. Fluid Mech. 12, 481–500 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Hasselmann, K.: On the non-linear energy transfer in a gravity-wave spectrum. Part 2. Conservation theorems, wave-particle analogy, irreversibility. J. Fluid Mech. 15, 273–281 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Lanford, III, O.E.: Time evolution of large classical systems. In: Lecture Notes in Physics, vol. 38, pp. 1–111. Springer, Berlin (1975)

  18. Lu, X.: On isotropic distributional solutions to the Boltzmann equation for Bose–Einstein particles. J. Stat. Phys. 116, 1597–1649 (2004)

    Article  ADS  MATH  Google Scholar 

  19. Lu, X.: The Boltzmann equation for Bose–Einstein particles: condensation in finite time. J. Stat. Phys. 150, 1138–1176 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Lu, X.: The Boltzmann equation for Bose–Einstein particles: regularity and condensation. J. Stat. Phys. 156, 493–545 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Lukkarinen, J., Spohn, H.: Weakly nonlinear Schrödinger equation with random initial data. Invent. Math. 183, 79–188 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Nazarenko, S.: Wave turbulence. In: Lecture Notes in Physics, vol. 825. Springer, Berlin (2011)

  23. Newell, A.C.: The closure problem in a system of random gravity waves. Rev. Geophys. 6, 1–31 (1968)

    Article  ADS  Google Scholar 

  24. Newell, A.C.: Rossby wave packet interactions. J. Fluid Mech. 35, 255–271 (1969)

    Article  ADS  MATH  Google Scholar 

  25. Niethammer, B., Velázquez, J.J.L.: Self-similar solutions with fat tails for Smoluchowski’s coagulation equation with locally bounded kernels. Commun. Math. Phys. 318, 505–532 (2013)

    Article  ADS  MATH  Google Scholar 

  26. Peierls, R.: Zur kinetischen Theorie der Wärmeleitung in Kristallen. Ann. Phys. 395, 1055–1101 (1929)

    Article  Google Scholar 

  27. Pulvirenti, M., Saffirio, C., Simonella, S.: On the validity of the Boltzmann equation for short range potentials. Rev. Math. Phys. 26, 1450001 (2014)

    Article  MathSciNet  Google Scholar 

  28. Simon, J.: Sobolev, Besov and Nikolskii spaces: imbeddings and comparisons for vector valued spaces on an interval. Ann. Math. Pura Appl. 157, 117–148 (1990)

  29. Spohn, H.: Kinetics of the Bose–Einstein condensation. Phys. D 239, 627–634 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zakharov, V.E.: Weak-turbulence spectrum in a plasma without a magnetic field. Zh. Eksp. Teor. Fiz. 51, 688–696 (1967) [Sov. Phys. JEPT 24, 455–459 (1967)]

  31. Zakharov, V.E.: Collaps of Langmuir waves. Zh. Eksp. Teor. Fiz. 62, 1745–1759 (1972) [Sov. Phys. JEPT 35, 908–914 (1972)]

  32. Zakharov, V.E., Filonenko, N.N.: Weak turbulence of capillary waves. Zh. Prikl. Mekh. Tekh. Fiz. 8(5), 62–67 (1967) [J. Appl. Mech. Tech. Phys. 8(5), 37–40 (1967)]

  33. Zakharov, V.E., L’vov, V.S., Falkovich, G.: Kolmogorov Spectra of Turbulence I. Wave Turbulence. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We thank B. Niethammer for comments that helped to clarify the structure of self-similar solutions to problems with multiple conserved quantities and for remarks concerning the final form of this paper. We also thank the anonymous reviewer who pointed out the continuity statement for the measure of the origin, which is contained in Proposition 3.4. The authors acknowledge support through the CRC 1060 The mathematics of emergent effects at the University of Bonn, that is funded through the German Science Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. M. Kierkels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kierkels, A.H.M., Velázquez, J.J.L. On the Transfer of Energy Towards Infinity in the Theory of Weak Turbulence for the Nonlinear Schrödinger Equation. J Stat Phys 159, 668–712 (2015). https://doi.org/10.1007/s10955-015-1194-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1194-0

Keywords

Mathematics Subject Classification

Navigation