Skip to main content
Log in

Hydrodynamical Model for Charge Transport in Graphene

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A hydrodynamical model for simulating charge transport in graphene is formulated by using of the maximum entropy principle. Both electrons in the conduction band and holes in the valence band are considered and it is assumed a linear dispersion relation for the energy bands around the equivalent Dirac points. The closure relations do not contain any fitting parameters except the ones already present in the kinetic description.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For a couple of functions \(f(x)\) and \(h(x)\), \( f(x) \sim h(x)\) means \(f(x)/h(x) \rightarrow 1\) as \( x \rightarrow + \infty \).

References

  1. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  2. Rozhkov, A.V., Ciavaras, G., Biokh, Y.P., Freilikher, V., Nori, F.: Electronic properties of mesoscopic graphene structures: charge confinement and control of spin and charge transport. Phys. Rep. 503, 109 (2011)

    Article  Google Scholar 

  3. Sofo, J.O., Chaudhari, A.S., Barber, G.D.: Graphane: a two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007)

    Article  ADS  Google Scholar 

  4. Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Blake, M.P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Ktsnelson, M.I., Geim, A.K., Novoselov, K.S.: Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610 (2009)

    Article  ADS  Google Scholar 

  5. Han, M.Y., Özylmaz, B., Zhang, Y., Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  6. Lichtenberger, P., Morandi, O., Schürrer, F.: High-field transport and optical phonon scattering in graphene. Phys. Rev. B 84, 045406 (2011)

    Article  ADS  Google Scholar 

  7. Cheng, Y., Gamba, I.M., Majorana, A., Shu, C.-W.: A discontinuous Galerkin solver for Boltzmann–Poisson systems in nano devices. Comput. Methods. Appl. Mech. Eng. 198(37–40), 3130–3150 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. B 106, 620–630 (1957)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. La Rosa, S., Mascali, G., Romano, V.: Exact maximum entropy closure of the hydrodynamical model for Si semiconductors: the 8-moment case. SIAM J. Appl. Math. 70(3), 710–734 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mascali, G., Romano, V.: A non parabolic hydrodynamical subband model for semiconductors based on the maximum entropy principle. Math. Comput. Model. 55, 1003–1020 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Camiola, V.D., Mascali, G., Romano, V.: Numerical simulation of a double-gate MOSFET with a subband model for semiconductors based on the maximum entropy principle. Contin. Mech. Thermodyn. 24, 417–436 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Camiola, V.D., Mascali, G., Romano, V.: Hydrodynamic subband model for semiconductor based on the maximum entropy principle. Math. Comput. Model. 58, 321–343 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Alí, G., Mascali, G., Romano, V., Torcasio, R.C.: A hydrodynamic model for covalent semiconductors with applications to GaN and SiC. Acta Appl. Math. 122(1), 335–348 (2012)

    MATH  Google Scholar 

  14. Camiola, V.D., Romano, V.: 2DEG-3DEG charge transport model for MOSFET based on the maximum entropy. SIAM J. Appl. Math. 73(4), 1439–1459 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  15. Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5/6), 1021–1065 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Zamponi, N., Barletti, L.: Quantum electronic trasport in graphene: a kinetic and fluid-dynamical approach. Math. Methods Appl. Sci. 34, 807–818 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Jungel, A., Zamponi, N.: Two spinorial drift-diffusion models for quantum electron transport in graphene. Commun. Math. Sci. 11(3), 807–830 (2013)

    Article  MathSciNet  Google Scholar 

  18. Morandi, O.: Wigner-function formalism applied to the Zener band transition in a semiconductor. Phys. Rev. B 80(12), 024301 (2009)

    Article  ADS  Google Scholar 

  19. Morandi, O., Schurrer, F.: Wigner model for quantum transport in graphene. J. Phys. A Math. Theor. 44(32), 265301 (2011)

    Article  ADS  Google Scholar 

  20. Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A.C., Robertson, J.: Kohn anomalies and electron phonon interactions in graphite. Phys. Rev. Lett. 93, 185503 (2004)

    Article  ADS  Google Scholar 

  21. Lazzeri, M., Piscanec, S., Mauri, F., Ferrari, A.C., Robertson, J.: Electron transport and hot phonons in carbon nanotubes. Phys. Rev. Lett. 95, 236802 (2005)

    Article  ADS  Google Scholar 

  22. Piscanec, S., Lazzeri, M., Robertson, J., Ferrari, A.C., Mauri, F.: Optical phonons in carbon nanotubes: Kohn anomalies, peierls distortions and dynamic effects. Phys. Rev. B 75, 035427 (2007)

    Article  ADS  Google Scholar 

  23. Tomadin, A., Brida, D., Cerullo, G., Ferrari, A.C., Polini, M.: Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening. Phys. Rev. B 88, 035430 (2013)

    Article  ADS  Google Scholar 

  24. Jacoboni, C.: Theory of Electron Transport in Semiconductors. Springer, Berlin (2010)

    Book  Google Scholar 

  25. Muscato, O., Di Stefano, V.: Heat generation and transport in nanoscale semiconductor devices via Monte Carlo and hydrodynamic simulations. COMPEL 30(2), 519–537 (2011). doi:10.1108/03321641111101050

    Article  MATH  MathSciNet  Google Scholar 

  26. Muscato, O., Pidatella, R.M., Fischetti, M.V.: Monte Carlo and hydrodynamic simulation of a one dimensional \(n^{+}-n-n^{+}\) silicon diode. VLSI Des. 6, 247 (1998)

    Article  Google Scholar 

  27. Stracquadanio, G., Romano, V., Nicosia, G.: Semiconductor device design using the Bimads algorithm. J. Comput. Phys. 242, 304–320 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Muscato, O., Romano, V.: Simulation of submicron silicon diodes with a non-parabolic hydrodynamical model based on the maximum entropy principle. VLSI Des. 13(1–4), 273–279 (2001)

    Article  Google Scholar 

  29. Junk, M., Romano, V.: Maximum entropy moment system of the semiconductor Boltzmann equation using Kanes dispersion relation. Contin. Mech. Thermodyn. 17, 247–267 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Lewin, L.: Polylogarithms and Associated Functions. Amsterdam, North Holland (1981)

    MATH  Google Scholar 

  31. Barletti, L., Cintolesi, C.: Derivation of isothermal quantum fluid equations with Fermi–Dirac and Bose–Einstein statistics. J. Stat. Phys. 148(2), 353–386 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Bobylev, A.V.: The Chapman–Enskog and Grad methods for solving the Boltzmann equation. Sov. Phys. Dock. 27, 29–31 (1982)

    Google Scholar 

  33. Gorban, A.N., Karlin, I.V., Ilg, P., Öttinger, H.C.: Corrections and enhancements of quasi-equilibrium states. J. Non-Newtonian Fluid. Mech. 96, 203–219 (2001)

    Article  MATH  Google Scholar 

  34. Colangeli, M., Karlin, I.V., Kröger, M.: From hyperbolic regularization to exact hydrodynamics for linearized Grad’s equations. Phys. Rev. E 75, 051204 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  35. Karlin, I.V., Colangeli, M., Kröger, M.: Exact linear hydrodynamics from the Boltzmann equation. Phys. Rev. Lett. 100, 214503 (2008)

    Article  ADS  Google Scholar 

  36. Blokhin, A.M., Bushmanov, R.S., Rudometova, A.S., Romano, V.: Linear asymptotic stability of the equilibrium state for the 2-D MEP hydrodynamical model of charge transport in semiconductors. Nonlinear Anal. 65, 1018–1038 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Blokhin, A.M., Bushmanov, R.S., Romano, V.: Nonlinear asymptotic stability of the equilibrium state for the MEP model of charge transport in semiconductors. Nonlinear Anal. 65, 2169–2191. World Scientific, Singapore (2006)

  38. Majorana, A.: Equilibrium solutions of the non-linear Boltzmann equation for an electron gas in a semiconductor. Il Nuovo Cimento B 108, 871–877 (1993)

    Article  ADS  Google Scholar 

  39. Poupaud, F.: Advance in kinetic theory and computing: selected papers. In: Perthame, B. (ed.) Series on Advances in Mathematics for Applied Sciences, vol. 22, pp. 141–168 (1994)

  40. Gorban, A.N., et al.: Invariant Manifolds for Physical and Chemical Kinetics. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  41. Colangeli, M.: From Kinetic Models to Hydrodynamics. Some Novel Results. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by P.R.A. University of Catania, the P.R.I.N. project 2010 “Kinetic and macroscopic models for particle transport in gases and semiconductors: analytical and computational aspects”, by the project MIUR PON “AMBITION POWER”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Romano.

Appendix

Appendix

Here we get the closure relation for the fluxes (3940). For the sake of simplifying the notation the index indicating electron and holes is omitted because no difference arises. Let \(\mathbf{n}\) be the unit vector of \(\mathbf{k}\). One has \(\mathbf{v} = v_F \mathbf{n}\). The relations

$$\begin{aligned} \int _{S_1} n_i n_j d \, \varphi = \pi \delta _{ij} \quad \text{ and } \quad \int _{S_1} n_{i_1} n_{i_2} \cdots n_{i_r} \, d\, \varphi = 0 \quad \text{ if } \,\, r \, \text{ odd } \end{aligned}$$

hold, \(n_i\)’s being the components of \(\mathbf{n}\) in a base and \(d \varphi \) the elementary angle of the unit circle \(S_1\) of \(\mathbb {R}^2\). From the kinetic definitions (20) by approximating the distribution function with the linearized MEP one (25) we have

$$\begin{aligned}&\rho _A \, \left( \begin{array}{c} F^{(0)}_{ij} \\ F^{(1)}_{ij} \end{array} \right) \approx \frac{2}{(2 \, \pi )^2} \int _{\mathbb {R}^2} \left( \begin{array}{c} 1\\ \varepsilon \end{array} \right) v_i \, v_j f_{MEP} (\mathbf{r},\mathbf{k},t) \,d^2 \mathbf{k}\\&\quad =\frac{2 v_F^2}{(2 \, \pi \, \hbar v_F)^2} \int _{S_1} n_i n_j \, d\, \varphi \int _0^{+\infty } \left( \begin{array}{c} 1\\ \varepsilon \end{array} \right) \frac{\varepsilon }{1+ e^{\lambda _A+\lambda _{W_A} \varepsilon }} \, d\, \varepsilon = \frac{\delta _{ij}}{2 \, \pi \, \hbar ^2} \left( \begin{array}{c} I_1\\ I_2 \end{array} \right) . \end{aligned}$$

Note that the integral of the anisotropic part of \(f_{MEP}\) vanishes because the integrand contains only odd powers in the components of the velocity. The calculations to get (21) are similar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camiola, V.D., Romano, V. Hydrodynamical Model for Charge Transport in Graphene. J Stat Phys 157, 1114–1137 (2014). https://doi.org/10.1007/s10955-014-1102-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1102-z

Keywords

Navigation