Skip to main content

An Electro-Thermal Hydrodynamical Model for Charge Transport in Graphene

  • Conference paper
  • First Online:
Progress in Industrial Mathematics at ECMI 2014 (ECMI 2014)

Part of the book series: Mathematics in Industry ((TECMI,volume 22))

Included in the following conference series:

  • 1145 Accesses

Abstract

A hydrodynamical model for the charge and the heat transport in graphene is presented. The state variables are moments of the electron, hole and phonon distribution functions, and their evolution equations are derived from the respective Boltzmann equations by integration. The closure of the system is obtained by means of the maximum entropy principle and all the main scattering mechanisms are taken into account. Numerical simulations are presented in the case of a suspended graphene monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zamponi, N., Barletti, L.: Quantum electronic transport in graphene: a kinetic and fluiddynamical approach. Math. Methods Appl. Sci. 34, 807–818 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Camiola, V.D., Romano, V.: Hydrodynamical model for charge transport in graphene. J. Stat. Phys. 157(6), 1114–1137 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mascali, G., Romano, V.: A comprehensive hydrodynamical model for charge transport in graphene. In: 2014 International Workshop on Computational Electronics, Paris (2014). doi: 10.1109/IWCE.2014.6865866

    Google Scholar 

  4. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Modern Phys. 81, 109 (2009)

    Article  Google Scholar 

  5. Fang, T., Konar, A., Xing, H., Jena, D.: High-field transport in two-dimensional graphene. Phys. Rev. B 84, 125450 (2011)

    Article  Google Scholar 

  6. Lichtenberger, P., Morandi, O., Schürrer, F.: High-field transport and optical phonon scattering in graphene. Phys. Rev. B 84, 045406 (2011)

    Article  Google Scholar 

  7. Mascali, G.: A hydrodynamic model for silicon semiconductors including crystal heating. Eur. J. Appl. Math. 26(4), 477–496 (2015)

    Article  MathSciNet  Google Scholar 

  8. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. B 106, 620 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  9. Alì, G., Mascali, G., Romano, V., Torcasio, R.C.: A hydrodynamical model for covalent semiconductors with a generalized energy dispersion relation. Eur. J. Appl. Math. 25, 255–276 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Muscato, O., Di Stefano, V.: Modeling heat generation in a submicrometric n+-n-n+ silicon diode. J. Appl. Phys. 104, 124501 (2008)

    Article  Google Scholar 

  11. Alì, G., Mascali, G., Romano, V., Torcasio, R.C.: A hydrodynamic model for covalent semiconductors with applications to GaN and SiC. Acta Applicandae Maetamicae 122, 335 (2012)

    MATH  Google Scholar 

  12. Camiola, V.D., Mascali, G., Romano, V.: Simulation of a double-gate MOSFET by a nonparabolic hydrodynamical subband model for semiconductors based on the maximum entropy principle. Math. Comput. Model. n58, 321 (2013)

    Google Scholar 

  13. Borysenko, K.M., Mullen, J.T., Barry, E.A., Paul, S., Semenov, Y.G., Zavada, J.M., Buongiorno Nardelli, M., Kim, K.W.: First-principles analysis of electron–phonon interactions in graphene. Phys. Rev. B 11, 121412(R) (2010)

    Google Scholar 

  14. Rengel, R., Couso, C., Martin, M.J.: A Monte Carlo study of electron transport in suspended monolayer graphene. In: Spanish Conference on Electron Devices (CDE) 2013, IEEEXplore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Romano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Camiola, V.D., Mascali, G., Romano, V. (2016). An Electro-Thermal Hydrodynamical Model for Charge Transport in Graphene. In: Russo, G., Capasso, V., Nicosia, G., Romano, V. (eds) Progress in Industrial Mathematics at ECMI 2014. ECMI 2014. Mathematics in Industry(), vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-23413-7_100

Download citation

Publish with us

Policies and ethics