Skip to main content
Log in

Multivariate Central Limit Theorem in Quantum Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the time evolution of N bosons in the mean field regime for factorized initial data. In the limit of large N, the many body evolution can be approximated by the non-linear Hartree equation. In this paper we are interested in the fluctuations around the Hartree dynamics. We choose k self-adjoint one-particle operators O 1,…,O k on \(L^{2} ({\mathbb{R}}^{3})\), and we average their action over the N-particles. We show that, for every fixed \(t \in{\mathbb{R}}\), expectations of products of functions of the averaged observables approach, as N→∞, expectations with respect to a complex Gaussian measure, whose covariance matrix can be expressed in terms of a Bogoliubov transformation describing the dynamics of quantum fluctuations around the mean field Hartree evolution. If the operators O 1,…,O k commute, the Gaussian measure is real and positive, and we recover a “classical” multivariate central limit theorem. All our results give explicit bounds on the rate of the convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben Arous, G., Kirkpatrick, K., Schlein, B.: A central limit theorem in many-body quantum dynamics. Commun. Math. Phys. 321(2), 371–417 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  2. Benedikter, N., de Oliveira, G., Schlein, B.: Quantitative derivation of the Gross-Pitaevskii equation. Preprint. arXiv:1208.0373

  3. Chen, X.: Second order corrections to mean field evolution for weakly interacting bosons in the case of 3-body interactions. Arch. Ration. Mech. Anal. 203(2), 455–497 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, L., Oon Lee, J., Schlein, B.: Rate of convergence towards Hartree dynamics. J. Stat. Phys. 144(4), 872–903 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Cramer, M., Eisert, J.: A quantum central limit theorem for non-equilibrium systems: exact local relaxation of correlated states. New J. Phys. 12, 055020 (2009)

    Article  Google Scholar 

  6. Cushen, C.D., Hudson, R.L.: A quantum-mechanical central limit theorem. J. Appl. Probab. 8, 454 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  7. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the cubic nonlinear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167, 515–614 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate. Ann. Math. (2) 172, 291–370 (2010)

    Article  Google Scholar 

  9. Erdős, L., Schlein, B., Yau, H.-T.: Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential. J. Am. Math. Soc. 22(4), 1099–1156 (2009)

    Article  Google Scholar 

  10. Erdős, L., Yau, H.-.-T.: Derivation for the nonlinear Schrödingier equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169–1205 (2001)

    MathSciNet  Google Scholar 

  11. Fröhlich, J., Knowles, A., Schwarz, S.: On the mean-field limit of bosons with Coulomb two-body interaction. Commun. Math. Phys. 288(3), 1023–1059 (2009)

    Article  ADS  MATH  Google Scholar 

  12. Grech, P., Seiringer, R.: The excitation spectrum for weakly interacting bosons in a trap. Commun. Math. Phys. 322(2), 559–591 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Grillakis, M., Machedon, M., Margetis, D.: Second-order corrections to mean field evolution of weakly interacting bosons. I. Commun. Math. Phys. 294(1), 273–301 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grillakis, M., Machedon, M., Margetis, D.: Second-order corrections to mean field evolution of weakly interacting bosons. II. Adv. Math. 228(3), 1788–1815 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ginibre, J., Velo, G.: The classical field limit of scattering theory for non-relativistic many-boson systems. I and II. Commun. Math. Phys. 66, 37–76 (1979). See also Commun. Math. Phys. 68, 45–68 (1979)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Goderis, D., Verbeure, A., Vets, P.: About the mathematical theory of quantum fluctuations. In: Mathematical Methods in Statistical Mechanics. Leuven Notes in Mathematical and Theoretical Physics. Series A: Mathematical Physics., vol. 1. Leuven University Press, Leuven (1989)

    Google Scholar 

  17. Hayashi, M.: Quantum estimation and the quantum central limit theorem. Sci. Technol. 227, 95 (2006)

    Google Scholar 

  18. Hepp, K.: The classical limit for quantum mechanics correlation functions. Commun. Math. Phys. 35, 265–277 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  19. Hepp, K., Lieb, E.H.: Phase transitions in reservoir-driven open systems with applications to lasers and superconductors. Helv. Phys. Acta 46, 573 (1973)

    Google Scholar 

  20. Jakšić, V., Pautrat, Y., Pillet, C.-A.: A quantum central limit theorem for sums of iid random variables. J. Math. Phys. 51, 015208 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. Knowles, A., Pickl, P.: Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298(1), 101–138 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Kuperberg, G.: A tracial quantum central limit theorem. Trans. Am. Math. Soc. 357, 549 (2005)

    Article  MathSciNet  Google Scholar 

  23. Lewin, M., Nam, P.T., Schlein, B.: Fluctuations around Hartree states in the mean-field regime. Preprint. arXiv:1307.0665

  24. Lewin, M., Nam, P.T., Serfaty, S., Solovej, J.P.: Bogoliubov spectrum of interacting Bose gases. Preprint. arXiv:1211.2778

  25. Rodianski, I., Schlein, B.: Quantum fluctuations and rate of convergence towards mean filed dynamics. Commun. Math. Phys. 291(1), 31–61 (2009)

    Article  ADS  Google Scholar 

  26. Seiringer, R.: The excitation spectrum for weakly interacting bosons. Commun. Math. Phys. 306, 565–578 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Speicher, R.: A noncommutative central limit theorem. Math. Z. 209(1), 55–66 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Spohn, H.: Kinetic equations from Hamiltonian dynamics. Rev. Mod. Phys. 52(3), 569–615 (1980)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Schlein.

Additional information

Dedicated to Herbert Spohn on the occasion of his 65th birthday, with friendship and admiration.

C. Saffirio supported by ERC Grant MAQD 240518.

B. Schlein partially supported by ERC Grant MAQD 240518.

Appendix: Properties of ξ N

Appendix: Properties of ξ N

We collect some properties of the Fock space vector \(\xi_{N} = d_{N} W^{*} (\sqrt{N} \varphi) \varphi^{\otimes N}\) which have been used in the proof of Theorem 1.1. The proof of the next lemma can be found in [1].

Lemma A.1

For \(\varphi\in L^{2} ({\mathbb{R}}^{3})\), set

$$\xi_N = d_N W^* (\sqrt{N} \varphi) \frac{a^*(\varphi)^N}{\sqrt {N!}} \varOmega $$

with \(d_{N} = e^{N/2} \sqrt{N!} N^{-N/2} \simeq N^{1/4}\). Then there exists a constant C>0 such that

$$\| ({\mathcal{N}}+1)^{-1/2} \xi_N \| \leq C $$

uniformly in N. Moreover, we have

$$\xi_N = \sum_{\ell=0}^\infty \xi_N^{(\ell)} a^* (\varphi)^\ell \varOmega $$

with the coefficients

$$\xi_N^{(\ell)} = \sum_{j=0}^\ell(-1)^j N^{j-\ell/2} \frac {N!}{(N-\ell+j)! (\ell-j)! j!} $$

Notice that the coefficients \(\xi_{N}^{(\ell)}\) satisfy the recursion

$$\xi_N^{(\ell)} = \frac{1-\ell}{\ell} N^{-1/2} \xi_N^{(\ell-1)} - \frac{1}{\ell} \xi_N^{(\ell-2)} $$

with \(\xi_{N}^{(0)} = 1\) and \(\xi_{N}^{(1)} = 0\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchholz, S., Saffirio, C. & Schlein, B. Multivariate Central Limit Theorem in Quantum Dynamics. J Stat Phys 154, 113–152 (2014). https://doi.org/10.1007/s10955-013-0897-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0897-3

Keywords

Navigation