Skip to main content
Log in

The classical limit for quantum mechanical correlation functions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For quantum systems of finitely many particles as well as for boson quantum field theories, the classical limit of the expectation values of products of Weyl operators, translated in time by the quantum mechanical Hamiltonian and taken in coherent states centered inx- andp-space aroundħ −1/2 (coordinates of a point in classical phase space) are shown to become the exponentials of coordinate functions of the classical orbit in phase space. In the same sense,ħ −1/2 [(quantum operator) (t) — (classical function) (t)] converges to the solution of the linear quantum mechanical system, which is obtained by linearizing the non-linear Heisenberg equations of motion around the classical orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schrödinger, E.: Ann. d. Phys.79, 489 (1926)

    Google Scholar 

  2. Heisenberg, W.: Die physikalischen Prinzipien der Quantentheorie. Leipzig: Hirzel 1930

    Google Scholar 

  3. Pauli, W.: Die allgemeinen Prinzipien der Wellenmechanik, Handbuch der Physik, V. 1, Berlin-Göttingen-Heidelberg: Springer 1958

    Google Scholar 

  4. Andrié, M.: Comment. Phys. Math.41, 333 (1971)

    Google Scholar 

  5. Maslov, V.P.: Uspekhi Mat. Nauk,15, 213 (1960); Théorie des perturbations et méthodes asymptotiques. Paris: Dunod 1972

    Google Scholar 

  6. Feynman, R.P.: Rev. Mod. Phys.20, 367 (1948)

    Google Scholar 

  7. Nelson, E.: J. Math. Phys.5, 332 (1964)

    Google Scholar 

  8. Berezin, F.A., Šubin, M.A.: Coll. Math. Soc. J. Bolyai,5 (1970)

  9. Ehrenfest, P.: Z. Physik45, 455 (1927)

    Google Scholar 

  10. Klauder, J.R.: J. Math. Phys.4, 1058 (1963);5, 177 (1964);8, 2392 (1967)

    Google Scholar 

  11. Glauber, R.J.: Phys. Rev.131, 2766 (1963)

    Google Scholar 

  12. Goldstone, J.: Nuovo Cim.19, 154 (1961)

    Google Scholar 

  13. Gross, E.P.: Phys. Rev.100, 1571 (1955);106, 161 (1957); Ann. Phys.4, 57 (1958);9, 292 (1960)

    Google Scholar 

  14. Hepp, K., Lieb, E.H.: Ann. Phys.76, 360 (1973); Helv. Phys. Acta46 (1973).

    Google Scholar 

  15. Constructive quantum field theory. Velo, G., Wightman, A.S., eds., Lecture Notes in Physics, Berlin-Heidelberg-New York: Springer 1973

    Google Scholar 

  16. Hepp, K.: Helv. Phys. Acta45, 237 (1972)

    Google Scholar 

  17. Kato, T.: Perturbation theory of linear operators. Berlin-Heidelberg-New York: Springer 1966

    Google Scholar 

  18. Wigner, E.P.: Phys. Rev.40, 749 (1932)

    Google Scholar 

  19. Kirkwood, J.G.: Phys. Rev.44, 31 (1933);45, 116 (1934)

    Google Scholar 

  20. Berezin, F.A.: Math. USSR Sbornik15, 577 (1971);17, 269 (1972); Izv. Akad. Nauk Ser. Mat.37, 1134 (1972)

    Google Scholar 

  21. Hepp, K., Lieb, E.H.: Phys. Rev.A8, 2517 (1973)

    Google Scholar 

  22. Perelomov, A.M.: Commun. math. Phys.26, 222 (1972)

    Google Scholar 

  23. Kostant, B.: In: Group representations in mathematics and physics, Bargmann, V., ed., Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

  24. Souriau, J.M.: Structure des systèmes dynamiques. Paris: Dunod 1970

    Google Scholar 

  25. Kirillov, A.A.: Elements of representation theory. Moscow: Nauka 1972

    Google Scholar 

  26. Arecchi, F.T., Courtens, E., Gilmore, R., Thomas, H.: Phys. Rev.A6, 2211 (1972)

    Google Scholar 

  27. Lieb, E.H.: Commun. math. Phys.31, 327 (1973)

    Google Scholar 

  28. Glimm, J., Jaffe, A.M.: In: Mathematics of contemporary physics, Streater, R.F., ed., London: Academic P. 1972

    Google Scholar 

  29. Jörgens, K.: Math. Z.77, 295 (1961)

    Google Scholar 

  30. Browder, F.E.: Math. Z.80, 249 (1962)

    Google Scholar 

  31. Segal, I.E.: Ann. Math.78, 339 (1963)

    Google Scholar 

  32. Coleman, S., Weinberg, E.: Phys. Rev. D7, 1888 (1973)

    Google Scholar 

  33. Glimm, J.: Commun. math. Phys.10, 1 (1968)

    Google Scholar 

  34. Osterwalder, K.: Fortschr. Physik19, 43 (1971)

    Google Scholar 

  35. Ruelle, D.: Statistical mechanics: Rigorous results, New York: Benjamin 1969

    Google Scholar 

  36. Ginibre, J.: In: Statistical mechanics and quantum field theory, de Witt, C., Stora, R., eds. Paris: Gordon & Breach 1971

    Google Scholar 

  37. Bloch, C., de Dominicis, C.: Nucl. Phys.10, 181 (1959)

    Google Scholar 

  38. Bialynicki-Birula, I.: Ann. Phys.67, 252 (1971)

    Google Scholar 

  39. Martin-Löf, A.: Skand. Aktuarietidskr.1967, 70

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Hunziker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hepp, K. The classical limit for quantum mechanical correlation functions. Commun.Math. Phys. 35, 265–277 (1974). https://doi.org/10.1007/BF01646348

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01646348

Keywords

Navigation