Skip to main content
Log in

Perturbed GUE Minor Process and Warren’s Process with Drifts

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider the minor process of (Hermitian) matrix diffusions with constant diagonal drifts. At any given time, this process is determinantal and we provide an explicit expression for its correlation kernel. This is a measure on the Gelfand–Tsetlin pattern that also appears in a generalization of Warren’s process (Electron. J. Probab. 12:573–590, 2007), in which Brownian motions have level-dependent drifts. Finally, we show that this process arises in a diffusion scaling limit from an interacting particle system in the anisotropic KPZ class in 2+1 dimensions introduced in Borodin and Ferrari (Commun. Math. Phys., 2008). Our results generalize the known results for the zero drift situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For a set S, the notation \(\frac{1}{2\pi\mathrm{i}} \oint_{\varGamma_{S}}\mathrm{d}wf(w)\) means that the integral is taken over any positively oriented simple contour that encloses only the poles of f belonging to S.

  2. Here, standard Brownian motions start from 0 and are normalized to have variance t at time t.

References

  1. Adler, M., Nordenstam, E., van Moerbeke, P.: Consecutive Minors for Dyson’s Brownian Motions (2010). arXiv:1007.0220

  2. Adler, M., van Moerbeke, P., Wang, D.: Random matrix minor processes related to percolation theory (2013). arXiv:1301.7017

  3. Anderson, R.F., Orey, S.: Small random perturbation of dynamical systems with reflecting boundary. Nagoya Math. J. 60, 189–216 (1976)

    MATH  MathSciNet  Google Scholar 

  4. Baryshnikov, Y.: GUEs and queues. Probab. Theory Relat. Fields 119, 256–274 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  6. Borodin, A., Ferrari, P.L.: Anisotropic Growth of Random Surfaces in 2+1 Dimensions. Commun. Math. Phys. (2008). arXiv:0804.3035. doi:10.1007/S00220-013-1823-X

  7. Borodin, A., Ferrari, P.L.: Large time asymptotics of growth models on space-like paths I: PushASEP. Electron. J. Probab. 13, 1380–1418 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Borodin, A., Gorin, V.: Shuffling algorithm for boxed plane partitions. Adv. Math. 220, 1739–1770 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Borodin, A., Kuan, J.: Asymptotics of Plancherel measures for the infinite-dimensional unitary group. Adv. Math. 219, 894–931 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Borodin, A., Kuan, J.: Random surface growth with a wall and Plancherel measures for O(∞). Commun. Pure Appl. Math. 63, 831–894 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Borodin, A., Péché, S.: Airy Kernel with two sets of parameters in directed percolation and random matrix theory. J. Stat. Phys. 132, 275–290 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Borodin, A., Ferrari, P.L., Prähofer, M., Sasamoto, T.: Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129, 1055–1080 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Burdzy, K., Kang, W., Ramanan, K.: The Skorokhod problem in a time-dependent interval. Stoch. Process. Appl. 119, 428–452 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Elkies, N., Kuperbert, G., Larsen, M., Propp, J.: Alternating-sign matrices and domino tilings I and II. J. Algebr. Comb. 1, 111–132 (1992)

    Article  MATH  Google Scholar 

  15. Ferrari, P.L., Frings, R.: On the partial connection between random matrices and interacting particle systems. J. Stat. Phys. 141, 613–637 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Forrester, P.J., Nagao, T.: Determinantal Correlations for Classical Projection Processes. J. Stat. Mech. P08011 (2011)

  17. Forrester, P.J., Nordenstam, E.: The anti-symmetric GUE minor process. Mosc. Math. J. 9, 749–774 (2009)

    MATH  MathSciNet  Google Scholar 

  18. Gorin, V., Shkolnikov, M.: Limits of multilevel TASEP and similar processes. Ann. Inst. Henri Poincaré (2012, to appear). arXiv:1206.3817

  19. Harrison, J.M., Williams, R.J.: Multidimensional reflected Brownian motions having exponential stationary distributions. Ann. Probab. 115–137 (1987)

  20. Ichiba, T., Karatzas, I.: On collisions of Brownian particles. Ann. Appl. Probab. 951–977 (2010)

  21. Johansson, K., Nordenstam, E.: Eigenvalues of GUE minors. Electron. J. Probab. 11, 1342–1371 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Karatzas, I., Pal, S., Shkolnikov, M.: Systems of Brownian particles with asymmetric collisions (2012). arXiv:1210.0259

  23. Metcalfe, A.: Universality properties of Gelfand–Tsetlin patterns. Probab. Theory Relat. Fields (2011, online first)

  24. Nordenstam, E.: On the shuffling algorithm for domino tilings. Electron. J. Probab. 15, 75–95 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nordenstam, E., Young, B.: Domino Shuffling on Novak Half-Hexagons and Aztec Half-Diamonds. Electr. J. Comb. 18 (2011)

  26. Okounkov, A., Reshetikhin, N.: The birth of a random matrix. Mosc. Math. J. 6, 553–566 (2006)

    MATH  MathSciNet  Google Scholar 

  27. Pal, S., Pitman, J.: One-dimensional Brownian particle systems with rank-dependent drifts. Ann. Appl. Probab. 2179–2207 (2008)

  28. Skorokhod, A.V.: Stochastic equations for diffusions in a bounded region. Theory Probab. Appl. 264–274 (1961)

  29. Varadhan, S.R.S., Williams, R.J.: Brownian motion in a wedge with oblique reflection. Commun. Pure Appl. Math. 405–443 (1984)

  30. Warren, J.: Dyson’s Brownian motions, intertwining and interlacing. Electron. J. Probab. 12, 573–590 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Warren, J., Windridge, P.: Some examples of dynamics for Gelfand Tsetlin patterns. Electron. J. Probab. 14, 1745–1769 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to M. Shkolnikov to point out how to use [18] to show Theorem 2 and to J. Warren for useful discussions. This work was supported by the German Research Foundation via the SFB 611–A12 and SFB 1060–B04 projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik L. Ferrari.

Appendix: Determinantal Correlations

Appendix: Determinantal Correlations

Since we refer several times to Lemma 3.4 of [12], we report it here.

Lemma A.1

(Lemma 3.4 of [12])

Assume we have a signed measure on {\(x_{i}^{n},n=1,\ldots,N\), i=1,…,n} given in the form,

$$ \frac{1}{Z_N}\prod_{n=1}^{N-1} \det\bigl[\phi_n\bigl(x_i^n,x_j^{n+1} \bigr)\bigr]_{1\leq i,j\leq n+1} \det\bigl[\varPsi_{N-i}^{N} \bigl(x_{j}^N\bigr)\bigr]_{1\leq i,j \leq N}, $$
(106)

where \(x_{n+1}^{n}\) are some “virtual” variables and Z N is a normalization constant. If Z N ≠0, then the correlation functions are determinantal.

To write down the kernel we need to introduce some notations. Define

$$ \phi^{(n_1,n_2)}(x,y)= \begin{cases} (\phi_{n_1} \ast\cdots\ast\phi_{n_2-1})(x,y),& n_1<n_2,\\ 0,& n_1\geq n_2, \end{cases} $$
(107)

where \((a* b)(x,y)=\sum_{z\in\mathbb{Z}}a(x,z) b(z,y)\), and, for 1≤n<N,

$$ \varPsi_{n-j}^{n}(x) := \bigl( \phi^{(n,N)} * \varPsi_{N-j}^{N}\bigr) (y), \quad j=1,\ldots,N. $$
(108)

Set \(\phi_{0}(x_{1}^{0},x)=1\). Then the functions

$$ \bigl\{ \bigl(\phi_0*\phi^{(1,n)}\bigr) \bigl(x_1^0,x\bigr), \dots,\bigl(\phi_{n-2}*\phi ^{(n-1,n)}\bigr) \bigl(x_{n-1}^{n-2},x\bigr), \phi_{n-1}\bigl(x_{n}^{n-1},x\bigr)\bigr\} $$
(109)

are linearly independent and generate the n-dimensional space V n . Define a set of functions \(\{\varPhi_{j}^{n}(x), j=0,\ldots,n-1\}\) spanning V n defined by the orthogonality relations

$$ \sum_x \varPhi_i^n(x) \varPsi_j^n(x) = \delta_{i,j} $$
(110)

for 0≤i,jn−1.

Further, if \(\phi_{n}(x_{n+1}^{n},x)=c_{n} \varPhi_{0}^{(n+1)}(x)\), for some c n ≠0, n=1,…,N−1, then the kernel takes the simple form

$$ K(n_1,x_1;n_2,x_2)= -\phi^{(n_1,n_2)}(x_1,x_2)+ \sum _{k=1}^{n_2} \varPsi_{n_1-k}^{n_1}(x_1) \varPhi_{n_2-k}^{n_2}(x_2). $$
(111)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, P.L., Frings, R. Perturbed GUE Minor Process and Warren’s Process with Drifts. J Stat Phys 154, 356–377 (2014). https://doi.org/10.1007/s10955-013-0887-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0887-5

Keywords

Navigation