Skip to main content
Log in

Matrix Liberation Process I: Large Deviation Upper Bound and Almost Sure Convergence

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We introduce the concept of matrix liberation process, a random matrix counterpart of the liberation process in free probability, and prove a large deviation upper bound for its empirical distribution and several properties on its rate function. As a simple consequence, we obtain the almost sure convergence of the empirical distribution of the matrix liberation process to that of the corresponding liberation process as continuous processes in the large N limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, G., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  2. Biane, Ph.: Free Brownian motion, free stochastic calculus and random matrices. Free Probab. Theory 12, 1–19 (1997)

  3. Biane, P., Capitaine, M., Guionnet, A.: Large deviation bound for matrix Brownian motion. Invent. math. 152, 433–459 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cabanal Duvillard, T., Guionnet, A.: Large deviations upper bounds for the laws of matrix-valued processes and non-commutative entropies. Ann. Probab. 29, 1205–1261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Collins, B., Dahlqvist, A., Kemp, T.: The spectral edge of unitary Brownian motion. Probab. Theory Relat. Fields (2017). https://doi.org/10.1007/s00440-016-0753-x

    MATH  Google Scholar 

  6. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  7. Guionnet, A.: Large random matrices: lectures on macroscopic asymptotics. Lecture Notes in Mathematics, vol. 1957. Springer, Berlin (2009)

  8. Hiai, F., Miyamoto, T., Ueda, Y.: Orbital approach to microstate free entropy. Int. J. Math. 20, 227–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hiai, F., Petz, D.: The Semicircle Law, Free Random Variables and Entropy. Mathematical Surveys and Monographs, vol. 77. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  10. Hu, Y.: Analysis on Gaussian Spaces. World Scientific, Singapore (2016)

    Book  Google Scholar 

  11. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus (Graduate Texts in Mathematics), vol. 113, 2nd edn. Springer, Berlin (1998)

  12. Lévy, T.: Schur–Weyl duality and the heat kernel measure on the unitary group. Adv. Math. 218, 537–575 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lévy, T.: The Master Field on the Plane. Astérisque, vol. 388 (2017)

  14. Lévy, T., Maïda, M.: On the Douglas–Kazakov phase transition. ESAIM Proc. 51, 89–121 (2015)

    Article  MATH  Google Scholar 

  15. Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Notes Series, 335. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  16. Nualart, D.: The Malliavin Calculus and Related Topics, Probability and its Applications, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  17. Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge Studies in Advanced Mathematics, 78. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  18. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  19. Ueda, Y.: Orbital free entropy, revisited. Indiana Univ. Math. J. 63, 551–577 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ueda, Y.: A remark on orbital free entropy. Arch. Math. 108, 629–638 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Voiculescu, D.: Limit laws for random matrices and free products. Invent. Math. 104(1), 201–220 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Voiculescu, D.: The analogue of entropy and of Fisher’s information measure in free probability theory VI: liberation and mutual free information. Adv. Math. 146, 101–166 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude to the referee for his/her very careful reading of this paper and pointing out a mistake in the original proof of exponential tightness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshimichi Ueda.

Additional information

This work was supported by Japan Society for the Promotion of Science (Grant-in-Aid for Challenging Exploratory Research JP16K13762).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueda, Y. Matrix Liberation Process I: Large Deviation Upper Bound and Almost Sure Convergence. J Theor Probab 32, 806–847 (2019). https://doi.org/10.1007/s10959-018-0819-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-018-0819-z

Keywords

Mathematics Subject Classification (2010)

Navigation