Skip to main content
Log in

Effective Dynamics for a Kinetic Monte–Carlo Model with Slow and Fast Time Scales

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider several multiscale-in-time kinetic Monte Carlo models, in which some variables evolve on a fast time scale, while the others evolve on a slow time scale. In the first two models we consider, a particle evolves in a one-dimensional potential energy landscape which has some small and some large barriers, the latter dividing the state space into metastable regions. In the limit of infinitely large barriers, we identify the effective dynamics between these macro-states, and prove the convergence of the process towards a kinetic Monte Carlo model. We next consider a third model, which consists of a system of two particles. The state of each particle evolves on a fast time-scale while conserving their respective energy. In addition, the particles can exchange energy on a slow time scale. Considering the energy of the first particle, we identify its effective dynamics in the limit of asymptotically small ratio between the characteristic times of the fast and the slow dynamics. For all models, our results are illustrated by representative numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bass, R.F.: Uniqueness in law for pure jump Markov processes. Probab. Theory Relat. Fields 79(2), 271–287 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  3. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  4. Chatterjee, A., Vlachos, D.G.: Multiscale spatial Monte Carlo simulations: Multigriding, computational singular perturbation, and hierarchical stochastic closures. J. Chem. Phys. 124, 064110 (2006)

    Article  ADS  Google Scholar 

  5. Chatterjee, A., Voter, A.F.: Accurate acceleration of kinetic Monte Carlo simulations through the modification of rate constants. J. Chem. Phys. 132(19), 194101 (2010)

    Article  ADS  Google Scholar 

  6. Dunford, N., Schwartz, J.T.: Linear Operators, Part 1. Wiley, New York (1988)

    Google Scholar 

  7. Ethier, S.N., Kurtz, T.G.: Markov Processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986)

    Book  MATH  Google Scholar 

  8. Fichthorn, K.A., Miron, R.A., Wang, Y., Tiwary, Y.: Accelerated molecular dynamics simulation of thin-film growth with the bond-boost method. J. Phys. Condens. Matter 21(8), 084212 (2009)

    Article  ADS  Google Scholar 

  9. Friesecke, G., Junge, O., Koltai, P.: Mean field approximation in conformation dynamics. Multiscale Model. Simul. 8(1), 254–268 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Givon, D., Kupferman, R., Stuart, A.M.: Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17(6), 55–127 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  11. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 288. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  12. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Probability and Its Applications. Springer, New York (2002)

    MATH  Google Scholar 

  13. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Grundlehren der Mathematischen Wissenschaften, vol. 320. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  14. Lahbabi, S.: Mathematical study of quantum and classical models for random materials in the atomic scale. Ph.D. thesis, Université de Cergy-Pontoise (2013). http://tel.archives-ouvertes.fr/tel-00873213

  15. Le Bris, C., Lelièvre, T., Luskin, M., Perez, D.: A mathematical formalization of the parallel replica dynamics. Monte Carlo Methods Appl. 18(2), 119–146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Legoll, F., Lelièvre, T.: Effective dynamics using conditional expectations. Nonlinearity 23(9), 2131–2163 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Legoll, F., Lelièvre, T.: Some remarks on free energy and coarse-graining. In: Engquist, B., Runborg, O., Tsai, R. (eds.) Numerical Analysis and Multiscale Computations. Lecture Notes in Computational Sciences and Engineering, vol. 82, pp. 279–329. Springer, Berlin (2012)

    Chapter  Google Scholar 

  18. Miron, R.A., Fichthorn, K.A.: Multiple-time scale accelerated molecular dynamics: addressing the small-barrier problem. Phys. Rev. Lett. 93, 128301 (2004)

    Article  ADS  Google Scholar 

  19. Novotny, M.A.: Monte Carlo algorithms with absorbing Markov chains: fast local algorithms for slow dynamics. Phys. Rev. Lett. 74(1), 1–5 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  20. Pavliotis, G.A., Stuart, A.M.: Multiscale Methods: Averaging and Homogenization. Springer, Berlin (2007)

    Google Scholar 

  21. Rao, C.V., Arkin, A.P.: Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. J. Chem. Phys. 118(11), 4999–5010 (2003)

    Article  ADS  Google Scholar 

  22. Reuter, K.: First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: Concepts, status, and frontiers. In: Deutschmann, O. (ed.) Modeling Heterogeneous Catalytic Reactions: from the Molecular Process to the Technical System, pp. 71–111. VCH, Weinheim (2011)

    Chapter  Google Scholar 

  23. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Grundlehren der Mathematischen Wissenschaften, vol. 293. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  24. Schütte, C., Huisinga, W.: Biomolecular conformations can be identified as metastable sets of molecular dynamics. In: Ciarlet, P.G., Le Bris, C. (eds.) Handbook of Numerical Analysis (Special Volume on Computational Chemistry), vol. X, pp. 699–744. Elsevier, Amsterdam (2003)

    Google Scholar 

  25. Schütte, C., Fischer, A., Huisinga, W., Deuflhard, P.: A direct approach to conformational dynamics based on Hybrid Monte–Carlo. J. Comput. Phys. 151, 146–168 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften, vol. 233. Springer, Berlin (1979)

    MATH  Google Scholar 

  27. Voter, A.F.: Introduction to the Kinetic Monte Carlo method. In: Sickafus, K.E., Kotomin, E.A., Uberuaga, B.P. (eds.) Radiation Effects in Solids, vol. 235, pp. 1–23. Springer, Berlin (2007)

    Chapter  Google Scholar 

  28. Weinan, E., Liu, D., Vanden-Eijnden, E.: Nested stochastic simulation algorithms for chemical kinetic systems with multiple time scales. J. Comput. Phys. 221(1), 158–180 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The models we consider here and the questions we study were suggested to us by Stefano Olla. We thank him for his suggestions and the fruitful discussions we had with him. We also thank Eric Cancès for his constant support throughout this research project. We thank Tony Lelièvre for his careful reading of a previous version of this article. The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement MNIQS No. 258023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Legoll.

Appendix: Some Useful Results

Appendix: Some Useful Results

For convenience, we recall in this appendix some classical results of probability theory that are needed in this article.

Martingales

Several results on martingales are useful in this work. The first one is an existence and uniqueness result for the martingale problem introduced by D.W. Stroock and S.R.S. Varadhan (see e.g. [1] and [26]):

Proposition 3

(Lemma 5.1 of Appendix 1 of [13])

Let (X t ) t≥0 be a Markov process and let \((\mathcal{F}_{t} )_{t \geq0}\) be its natural filtration. For any bounded function F, we introduce

$$M^F_t = F (X_t ) - F (X_0 ) - \int^t_0 LF (X_s )ds $$

and

$$N^F_t = \bigl(M^F_t \bigr)^2 - \int^t_0 \bigl(LF^2 (X_s ) - 2F (X_s ) LF (X_s ) \bigr) ds, $$

where L is the generator of the Markov process (X t ). Then M F and N F are \(\mathcal{F}_{t}\)-martingales. In particular, the quadratic variation of M F reads

$$\bigl\langle M^F\bigr\rangle _t = \int ^t_0 \bigl(LF^2 (X_s ) - 2F (X_s ) LF (X_s ) \bigr)ds. $$

We recall that for a continuous local martingale M, the process 〈M〉 is defined to be the unique right-continuous and increasing predictable process starting at zero such that M 2−〈M〉 is a local martingale.

The next result is of paramount importance to prove that a process is a jump process, and to identify its generator. We state here this result as a simplified version of [12, Theorem 21.11].

Lemma 4

(Uniqueness result for the martingale problem)

Let F be a countable space, Z t a stochastic process valued in F and L an operator on bounded functions \(\phi:F\rightarrow{\mathbb{R}}\) defined by

$$L\phi(x)=\sum_{x'\in F}L_{x,x'} \bigl( \phi \bigl(x'\bigr)-\phi(x) \bigr), $$

where L x,x≥0 for any x,x′∈F and sup x,x′∈F L x,x<∞. If for any bounded function \(\phi:F\rightarrow{\mathbb{R}}\), the process

$$M_t^\phi:= \phi (Z_t ) - \phi (Z_0 ) -\int_0^t L\phi (Z_s ) \, ds $$

is a martingale with respect to the natural filtration of (Z t ) t≥0, then (Z t ) t≥0 is the jump process of initial condition Z 0 and of generator L.

Convergence of Probability Measures

We now turn to classical results concerning the convergence of probability measures in \(D_{\mathbb{R}} [0,\infty )\), which is the space of functions that are right continuous with left limits (the so-called càd-làg functions), defined on [0,∞) and valued in \(\mathbb{R}\). Proposition 4 gives an equivalent definition of the Skorohod metric on \(D_{\mathbb{R}} [0,\infty )\) (see [7, p. 116–118] for the original definition of the Skorohod metric, that we actually do not use in this work). Theorem 4 states convergence criteria for probability measures on \(D_{\mathbb{R}} [0,\infty )\).

Proposition 4

(Proposition 5.3, Chap. 3 of [7])

Let (x n ) n≥0 be a sequence in \(D_{\mathbb{R}} [0,\infty )\) and \(x\in D_{\mathbb{R}} [0,\infty )\). The following assertions are equivalent:

  • lim n→∞ x n =x in the space \(D_{\mathbb{R}} [0,\infty )\) endowed with the Skorohod metric.

  • For any T>0, there exists a sequence of strictly increasing, continuous maps (λ n ) n≥0 defined on [0,∞) and valued in [0,∞) such that

    $$ \lim_{n \rightarrow\infty} \sup_{0\leq t \leq T} \bigl| \lambda_n (t )-t\bigr|=0 $$
    (45)

    and

    $$ \lim_{n\rightarrow\infty} \sup_{0\leq t \leq T} \bigl|x_n (t )-x \bigl(\lambda_n (t ) \bigr)\bigr|=0. $$
    (46)

Theorem 4

(Aldous’ criterion, Theorem VI.4.5 of [11])

Let (X n) n≥1 be a sequence of càd-làg processes, with distributions \({\mathcal{P}}^{n}\). Suppose that

  • for any \(N\in{\mathbb{N}}\) and ϵ>0, there exists \(n_{0}\in{\mathbb{N}}\), n 0>0, and \(K\in{\mathbb{R}}^{+}\) such that, for any nn 0,

    $$ {\mathcal{P}}^n \Bigl( \sup_{t\leq N} \bigl\vert X^n_t\bigr\vert >K \Bigr) \leq\epsilon. $$
    (47)
  • for any \(N\in{\mathbb{N}}\) and α>0, we have

    $$ \lim_{\theta\rightarrow0} \, \limsup_n \, \sup_{S,T\in\mathfrak{T}_N^n, \;S\leq T\leq S+\theta} {\mathcal{P}}^n \bigl(\bigl\vert X^n_T-X^n_S\bigr\vert \geq \alpha \bigr)=0, $$
    (48)

    where \(\mathfrak{T}_{N}^{n}\) is the set of all \({\mathcal{F}}^{n}\) stopping times that are bounded by N.

Then the sequence \((X^{n})_{n\in{\mathbb{N}}}\) is tight.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lahbabi, S., Legoll, F. Effective Dynamics for a Kinetic Monte–Carlo Model with Slow and Fast Time Scales. J Stat Phys 153, 931–966 (2013). https://doi.org/10.1007/s10955-013-0877-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0877-7

Keywords

Navigation