Skip to main content
Log in

Temperature Fluctuations for a System in Contact with a Heat Bath

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The problem of how to define and compute temperature fluctuations for a small system in contact with a heat bath is an old one and originates from Einstein’s theory of Brownian motion. Only for a small enough system does their relative size allow a straightforward experimental verification. Here we focus on a mesoscopic system in contact with a heat bath at temperature T and provide a self-consistent argument showing as to why, and in what sense, the observable standard deviation of temperature from T equals \(\sqrt{k_{\rm B}/C}T_{\circ}\) where C is the mesoscopic system’s heat capacity. Our argument is based on ergodic decomposition, a simple fact that holds for a system in thermodynamic equilibrium and away from phase-transition points. In this way we close a line of argument opened by de Haas-Lorentz a century ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Formally, Δ(1/T)=(ΔT)/T 2 so that with \(\Delta E = \sqrt{k_{\rm B} C} T\) we end up with (1).

  2. See in particular pp. 75–81 of ter Haar [27] and read Kramers’ original paper [25] and/or Dresden’s 1988 comments [26] to catch how well Kramers realized the importance of taking the thermodynamic limit.

  3. Whereas even classical Heisenberg spins give rise to a “natural” dynamics, Ising spins do not. One must give them one such as Monte Carlo or Metropolis. The dynamics of the infinite classical Heisenberg model has been shown to exist by [29], and in full detail in [30].

References

  1. Kittel, C.: Temperature fluctuation: an oxymoron. Phys. Today 41(5), 43 (1988)

    Article  Google Scholar 

  2. Feshbach, H.: Small systems: when does thermodynamics apply? Phys. Today 40(11), 9–11 (1987)

    Article  Google Scholar 

  3. Mandelbrot, B.B.: Temperature fluctuation: a well-defined and unavoidable notion. Phys. Today 42(1), 71–73 (1989). His statistical sampling argument has been reanalyzed recently by Falcioni et al. [4]

    Article  MathSciNet  ADS  Google Scholar 

  4. Falcioni, M., Villamaina, D., Vulpiani, A., Puglisi, A., Sarracino, A.: Estimate of temperature and its uncertainty in small systems. Am. J. Phys. 79, 777–785 (2011)

    Article  ADS  Google Scholar 

  5. Einstein, A.: Über die Gültigkeitsgrenze des Satzes vom thermodynamischen Gleichgewicht und über die Möglichkeit einer neuen Bestimmung der Elementarquanta. Ann. Phys. (Leipz.) 22, 569–572 (1907)

    Article  ADS  MATH  Google Scholar 

  6. de Haas-Lorentz, G.L.: Die Brownsche Bewegung und einige verwandte Erscheinungen, i.e., ‘Brownian motion and some related phenomena’. Vieweg, Braunschweig (1913). See in particular pp. 93–95. This is the German edition of the author’s Ph.D. thesis obtained the year before with H.A. Lorentz

    Book  Google Scholar 

  7. Fermi, E.: Thermodynamics. Prentice Hall, New York (1937). Dover, New York (1956). Heat capacity is an accepted notion antedating the first edition of M. Planck’s classic on thermodynamics (1897)

    Google Scholar 

  8. Ornstein, L.S., Milatz, J.M.W.: Accidental deviations in the conduction of heat. Physica (Utrecht) 6, 1139–1145 (1939)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Milatz, J.M.W., van der Velden, H.A.: Natural limit of measuring radiation with a bolometer. Physica (Utrecht) 10, 369–380 (1943)

    Article  ADS  Google Scholar 

  10. Chui, T.C.P., Swanson, D.R., Adriaans, M.J., Nissen, J.A., Lipa, J.A.: Temperature fluctuations in the canonical ensemble. Phys. Rev. Lett. 69, 3006–3008 (1992)

    Article  ADS  Google Scholar 

  11. Lindhard, J.: “Complementarity” between energy and temperature. In: de Boer, J., Dal, E., Ulfbeck, O. (eds.) The Lesson of Quantum Theory, pp. 99–112. North-Holland, Amsterdam (1986). See in particular, §6

    Google Scholar 

  12. Uffink, J., van Lith, J.: Thermodynamic uncertainty relations. Found. Phys. 29, 655–692 (1999)

    Article  MathSciNet  Google Scholar 

  13. Phillies, G.D.J.: The polythermal ensemble: a rigorous interpretation of temperature fluctuations in statistical mechanics. Am. J. Phys. 52, 629–632 (1984)

    Article  ADS  Google Scholar 

  14. Prosper, H.B.: Temperature fluctuations in a heat bath. Am. J. Phys. 61, 54–58 (1993)

    Article  ADS  Google Scholar 

  15. Huang, K.: Statistical Mechanics, 2nd edn. Wiley, New York (1987). Sects. 7.2, 9.3 & 9.4

    MATH  Google Scholar 

  16. Balatsky, A.V., Zhu, J.-X.: Quantum Nyquist temperature fluctuations. Physica E 18, 341–342 (2003)

    Article  ADS  Google Scholar 

  17. Hugenholtz, N.M.: States and representations in statistical mechanics. In: Streater, R.F. (ed.) Mathematics of Contemporary Physics, pp. 145–182. Academic, London (1972)

    Google Scholar 

  18. Jahnke, T., Lanéry, S., Mahler, G.: Operational approach to fluctuations of thermodynamic variables in finite quantum systems. Phys. Rev. E 83, 011109 (2011)

    Article  ADS  Google Scholar 

  19. Touchette, H.: Temperature fluctuations and mixtures of equilibrium states in the canonical ensemble. In: Gell-Mann, M., Tsallis, C. (eds.) Nonextensive Entropy—Interdisciplinary Applications, pp. 159–176. Oxford University Press, Oxford (2004)

    Google Scholar 

  20. van Enter, A.C.D., van Hemmen, J.L.: Statistical-mechanical formalism for spin glasses. Phys. Rev. A 29, 355–365 (1984). Section II and Appendix. As exposed there in detail, similar arguments hold for quantum systems

    Article  MathSciNet  ADS  Google Scholar 

  21. Lanford, O.E. III, Lebowitz, J.L.: Time evolution and ergodic properties of harmonic systems. In: Springer Lecture Notes in Physics, vol. 38, pp. 144–177 (1975)

    Google Scholar 

  22. van Hemmen, J.L.: Dynamics and ergodicity of the infinite harmonic crystal. Phys. Rep. 65, 43–149 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  23. Robinson, D.W.: Return to equilibrium. Commun. Math. Phys. 31, 171–189 (1973)

    Article  ADS  MATH  Google Scholar 

  24. Heller, G., Kramers, H.A.: Ein klassisches Modell des Ferromagnetikums und seine nachträgliche Quantisierung im Gebiete tiefer Temperaturen. Proc. Roy. Acad. Sci. Amsterdam 37, 378–385 (1934)

    Google Scholar 

  25. Kramers, H.A.: Zur Theorie des Ferromagnetismus. In: 7e Congrès International du Froid, La Haye-Amsterdam, Juin (1936). Rapports et Communications. Also in: Commun. Kamerlingh Onnes Lab. Univ. Leiden 22(83), 1–22 (1936)

    Google Scholar 

  26. Dresden, M.: Kramers’s contributions to statistical mechanics. Phys. Today 41(9), 26–33 (1988). One may consult Dresden for, amongst others, a thoughtful evaluation of Kramers’ paper [25]

    Article  Google Scholar 

  27. ter Haar, D.: Master of Modern Physics: the Scientific Contributions of H.A. Kramers. Princeton University Press, Princeton (1998)

    Google Scholar 

  28. de Finetti, B.: Theory of Probability, vols. I/II. Wiley, London (1974/5)

    Google Scholar 

  29. Vuillermot, P.A.: Intertwining relations between the dynamics of the infinite classical and quantum Heisenberg models: a new application of Trotter approximations and of the coherent-state formalism. Lett. Nuovo Cimento 24, 333–338 (1979)

    Article  Google Scholar 

  30. Vuillermot, P.A.: Nonlinear dynamics of the infinite classical Heisenberg model: existence proof and classical limit of the corresponding quantum time evolution. Commun. Math. Phys. 76, 1–26 (1980)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Onsager, L.: Reciprocal relations in irreversible processes II. Phys. Rev. 38, 2265–2279 (1931)

    Article  ADS  MATH  Google Scholar 

  32. Keizer, J.: Statistical Thermodynamics of Nonequilibrium Processes p. 68. Springer, New York (1987)

    Book  Google Scholar 

  33. Emch, G.G., Radin, C.: Relaxation of local thermal deviations from equilibrium. J. Math. Phys. 12, 2043–2046 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. van Hemmen, J.L.: Linear fermion systems, molecular field models, and the KMS condition. Fortschr. Phys. 26, 397–439 (1978). Sect. II

    Article  MathSciNet  Google Scholar 

  35. Landau, D.P., Binder, K.: A Guide to Monte Carlo Simulations in Statistical Physics, 3rd edn. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  36. Sewell, G.L.: Quantum Theory of Collective Phenomena. Oxford University Press, Oxford (1986)

    Google Scholar 

  37. Simon, B.: The Statistical Mechanics of Lattice Gases, vol. I. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  38. Hepp, K.: Quantum theory of measurement and macroscopic observables. Helv. Phys. Acta 45, 237–248 (1972)

    Google Scholar 

  39. Segel, L.A.: Mathematics Applied to Continuum Mechanics. Macmillan, London (1977). Appendix 9.1

    MATH  Google Scholar 

  40. Landau, L.D., Lifshitz, E.M.: Statistical Physics. Pergamon, Oxford (1980). Ch. 12

    Google Scholar 

Download references

Acknowledgements

A.L. thanks the Humboldt Foundation for a Humboldt Award allowing his stay at the Technische Universität München. J.L.v.H. gratefully acknowledges the hospitality of the University of Ottawa, where this paper was finished. Both thank Aernout van Enter for constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Longtin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leo van Hemmen, J., Longtin, A. Temperature Fluctuations for a System in Contact with a Heat Bath. J Stat Phys 153, 1132–1142 (2013). https://doi.org/10.1007/s10955-013-0867-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0867-9

Keywords

Navigation