Skip to main content
Log in

Nonlinear dynamics of the infinite classical Heisenberg model: Existence proof and classical limit of the corresponding quantum time evolution

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For any initial spin configuration we prove the existence, unicity and regularity properties of the solution of Hamilton's equations for the infinite classical Heisenberg model with stable interactions, along with the essential selfadjointness of the associated Liouville operator. We also prove new properties of SU (2)-coherent states which, together with the concept of Trotter approximations for one-parameter (semi-) groups, are used to show that this dynamics is nothing but the classical limit of the time evolution generated by the infinite quantum (suitably normalized) Heisenberg Hamiltonian. The classical limit emerges when the spin magnitude S goes to infinity while Plank's constantħ goes to zero, their product Sħ remaining fixed. The main results are stated in the form of intertwining relations between the classical and the quantum unitary group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lanford, O.E., Lebowitz, J. L., Lieb, E. H.: J. Stat. Phys.16, 453–461 (1977)

    Google Scholar 

  2. Dobrushin, R. L., Fritz, J.: Commun. Math. Phys.55, 275–292 (1977)

    Google Scholar 

  3. Dobrushin, R. L., Fritz, J.: Commun. Math. Phys.57, 67–81 (1977)

    Google Scholar 

  4. Vuillermot, P. A.: Lett. Nuovo Cimento24, 333–338 (1979)

    Google Scholar 

  5. Lang, S.: Analysis II, London, Amsterdam, Paris: Addison Wesley (1968)

    Google Scholar 

  6. Ruelle, D.: Statistical mechanics, rigorous results. New York: Benjamin, 1969

    Google Scholar 

  7. Arnold, V.: Ordinary differential equations. Cambridge, Massachusetts: MIT Press, 1973

    Google Scholar 

  8. Schwartz, L.: Cours d'analyse. Paris: Hermann, 1967

    Google Scholar 

  9. Trotter, A. F.: Pac. J. Math.8, 887–919 (1958)

    Google Scholar 

  10. Kurtz, T. G.: Funct. Analy.3, 354–375 (1969)

    Google Scholar 

  11. Hepp, K., Lieb, E. H.: Ann. Phys.76, 360–404 (1973)

    Google Scholar 

  12. Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. II New York: Academic Press, 1977

    Google Scholar 

  13. Riesz, F., Nagy, B.: Leçons d'analyse fonctionelle. Paris: Gauthiers-Villars 1968

    Google Scholar 

  14. Nelson, E.: Math.70, 572–615 (1959)

    Google Scholar 

  15. Robinson, D. W.: Commun. Math. Phys.7, 337–348 (1968)

    Google Scholar 

  16. Streater, R. F.: Commun. Math. Phys.6, 233–247 (1967)

    Google Scholar 

  17. Sakai, S.: C*-algebras and W*-algebras, Berlin, Heidelberg, New York: Springer 1971

    Google Scholar 

  18. Lieb, E. H.: Commun. Math. Phys.31, 327–340 (1973)

    Google Scholar 

  19. Yosida, K.: Functional analysis, Berlin, Heidelberg, New York: Springer 1965

    Google Scholar 

  20. Schwartz, L.: Theorie des distributions. Paris: Herman, 1973

    Google Scholar 

  21. Simon, B.: Commun. Math. Phys.71, 247–276 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by E. Lieb

Work supported in part by the Swiss National Science Foundation under Grant 820-436-76 and in part by the U.S. Department of Energy under contract EG-77-C-03-1538.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuillermot, P.A. Nonlinear dynamics of the infinite classical Heisenberg model: Existence proof and classical limit of the corresponding quantum time evolution. Commun.Math. Phys. 76, 1–26 (1980). https://doi.org/10.1007/BF01197107

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01197107

Keywords

Navigation