Skip to main content
Log in

The Polyanalytic Ginibre Ensembles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For integers n,q=1,2,3,… , let Pol n,q denote the \({\mathbb{C}}\)-linear space of polynomials in z and \(\bar{z}\), of degree ≤n−1 in z and of degree ≤q−1 in \(\bar{z}\). We supply Pol n,q with the inner product structure of

$$\begin{aligned} L^2 \bigl({\mathbb{C}},\mathrm{e}^{-m|z|^2} {\mathrm{d}}A \bigr),\quad \mbox {where } {\mathrm{d}}A(z)=\pi^{-1}{\mathrm{d}}x {\mathrm{d}}y,\ z= x+ {\mathrm{i}}y; \end{aligned}$$

the resulting Hilbert space is denoted by Pol m,n,q . Here, it is assumed that m is a positive real. We let K m,n,q denote the reproducing kernel of Pol m,n,q , and study the associated determinantal process, in the limit as m,n→+∞ while n=m+O(1); the number q, the degree of polyanalyticity, is kept fixed. We call these processes polyanalytic Ginibre ensembles, because they generalize the Ginibre ensemble—the eigenvalue process of random (normal) matrices with Gaussian weight. There is a physical interpretation in terms of a system of free fermions in a uniform magnetic field so that a fixed number of the first Landau levels have been filled. We consider local blow-ups of the polyanalytic Ginibre ensembles around points in the spectral droplet, which is here the closed unit disk \(\bar{\mathbb{D}}:=\{z\in{\mathbb{C}}:|z|\le1\}\). We obtain asymptotics for the blow-up process, using a blow-up to characteristic distance m −1/2; the typical distance is the same both for interior and for boundary points of \(\bar{\mathbb{D}}\). This amounts to obtaining the asymptotical behavior of the generating kernel K m,n,q . Following (Ameur et al. in Commun. Pure Appl. Math. 63(12):1533–1584, 2010), the asymptotics of the K m,n,q are rather conveniently expressed in terms of the Berezin measure (and density)

For interior points |z|<1, we obtain that \({\mathrm{d}}B^{\langle z\rangle}_{m,n,q}(w)\to{\mathrm{d}}\delta_{z} \) in the weak-star sense, where δ z denotes the unit point mass at z. Moreover, if we blow up to the scale of m −1/2 around z, we get convergence to a measure which is Gaussian for q=1, but exhibits more complicated Fresnel zone behavior for q>1. In contrast, for exterior points |z|>1, we have instead that \({\mathrm{d}}B^{\langle z\rangle}_{m,n,q}(w) \to{\mathrm{d}}\omega(w,z, {\mathbb{D}}^{e}) \), where \({\mathrm{d}}\omega(w,z,{\mathbb{D}}^{e})\) is the harmonic measure at z with respect to the exterior disk \({\mathbb{D}}^{e}:= \{w\in{\mathbb{C}}:\, |w|>1\}\). For boundary points, |z|=1, the Berezin measure \({\mathrm{d}}B^{\langle z\rangle}_{m,n,q}\) converges to the unit point mass at z, as with interior points, but the blow-up to the scale m −1/2 exhibits quite different behavior at boundary points compared with interior points. We also obtain the asymptotic boundary behavior of the 1-point function at the coarser local scale q 1/2 m −1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abreu, L.D.: Sampling and interpolation in Bargmann-Fock spaces of polyanalytic functions. Appl. Comput. Harmon. Anal. 29, 287–302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abreu, L.D., Feichtinger, H.G.: Function Spaces of Polyanalytic Functions. Harmonic and Complex Analysis and Its Applications. Springer, Berlin (2013). 32 pp., in press

    Google Scholar 

  3. Ameur, Y., Hedenmalm, H., Makarov, N.: Berezin transform in polynomial Bergman spaces. Commun. Pure Appl. Math. 63(12), 1533–1584 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ameur, Y., Hedenmalm, H., Makarov, N.: Fluctuations of eigenvalues of random normal matrices. Duke Math. J. 159, 31–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ameur, Y., Hedenmalm, H., Makarov, N.: Random normal matrices and Ward identities. Submitted

  6. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  7. Askour, N., Intissar, A., Mouayn, Z.: Espaces de Bargmann généralisés et formules explicites pour leurs noyaux reproduisants. C. R. Math. Acad. Sci. Sér. I Math. 325(7), 707–712 (1997)

    MathSciNet  ADS  MATH  Google Scholar 

  8. Berman, R.: Determinantal point processes and fermions on complex manifolds: bulk universality. arXiv:0811.3341v1

  9. Berry, A.C.: The accuracy of the Gaussian approximation to the sum of independent variates. Trans. Am. Math. Soc. 49(1), 122–136 (1941)

    Article  Google Scholar 

  10. Borodin, A.: Determinantal point processes. arXiv:0911.1153v1

  11. Deift, P.A.: Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes in Mathematics, vol. 3. New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence (1999)

    Google Scholar 

  12. Deift, P., Gioev, D.: Random Matrix Theory: Invariant Ensembles and Universality. Courant Lecture Notes in Mathematics, vol. 18. Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence (2009)

    Google Scholar 

  13. Dunne, G.V.: Edge asymptotics of planar electron densities. Int. J. Mod. Phys. B 8, 1625–1638 (1994)

    Article  ADS  Google Scholar 

  14. Esséen, C.-G.: On the Liapunoff limit of error in the theory of probability. Ark. Mat. Astron. Fys. A 28(9), 1–19 (1942)

    MATH  Google Scholar 

  15. Forrester, P.J.: Log-Gases and Random Matrices. London Mathematical Society Monograph Series, vol. 34. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  16. Garnett, J., Marshall, D.: Harmonic Measure. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  17. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Academic Press, New York (1980)

    MATH  Google Scholar 

  18. Haimi, A., Hedenmalm, H.: Asymptotic expansion of polyanalytic Bergman kernels. Submitted

  19. Hedenmalm, H., Olofsson, A.: Hele-Shaw flow on weakly hyperbolic surfaces. Indiana Univ. Math. J. 54(4), 1161–1180 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hedenmalm, H., Makarov, N.: Quantum Hele-Shaw flow. arXiv:math/0411437

  21. Hedenmalm, H., Makarov, N.: Coulomb gas ensembles and Laplacian growth. Proc. Lond. Math. Soc. (3) 106, 859–907 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hedenmalm, H., Perdomo-G., Y.: Mean value surfaces with prescribed curvature form. J. Math. Pures Appl. 83(9), 1075–1107 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Hedenmalm, H., Shimorin, S.: Hele-Shaw flow on hyperbolic surfaces. J. Math. Pures Appl. (9) 81(3), 187–222 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. University Lecture Series, vol. 51. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  26. Koornwinder, T.H., Wong, R.S., Koekoek, R., Swarttouw, R.F.: Orthogonal Polynomials. NIST Handbook of Mathematical Functions, pp. 435–484. U.S. Dept. of Commerce, Washington (2010)

    Google Scholar 

  27. Levin, E., Lubinsky, D.: On the airy reproducing kernel, and associated sampling series and quadrature formula. Integral Equ. Oper. Theory 63, 427–438 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Macchi, O.: The coincidence approach to stochastic point processes. Adv. Appl. Probab. 7, 83–122 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mehta, M.L.: Random Matrices, 3rd edn. Pure and Applied Mathematics (Amsterdam), vol. 142. Elsevier/Academic Press, Amsterdam (2004)

    MATH  Google Scholar 

  30. Mouayn, Z.: Coherent state transforms attached to generalized Bargmann spaces on the complex plane. Math. Nachr. 284(14–15), 1948–1954 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mouayn, Z.: New formulae representing magnetic Berezin transforms as functions of the Laplacian on \({\mathbb{C}}^{N}\). arXiv:1101.0379

  32. Perelomov, A.: Generalized Coherent States and Their Applications. Texts and Monographs in Physics. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  33. Rider, B., Virág, B.: The noise in the circular law and the Gaussian free field. Int. Math. Res. Not. 2, mm006 (2007). 33 pp.

    Google Scholar 

  34. Saff, E., Totik, V.: Logarithmic Potentials with External Fields. Grundlehren der mathematischen Wissenschaften, vol. 316. Springer, Berlin (1997)

    MATH  Google Scholar 

  35. Szegö, G.: Über eine Eigenschaft der Exponentialreihe. Sitzungber. Berlin Math. Gesellschaftwiss. 23, 50–64 (1923)

    Google Scholar 

  36. Vasilevski, N.L.: Poly-Fock spaces. In: Differential Operators and Related Topics, Vol. I, Odessa 1997. Oper. Theory Adv. Appl., vol. 117, pp. 371–386. Birkhäuser, Basel (2000)

    Chapter  Google Scholar 

  37. Zabrodin, A.: Matrix models and growth processes: from viscous flows to the quantum Hall effect. In: Applications of Random Matrices in Physics. NATO Sci. Ser. II Math. Phys. Chem., vol. 221, pp. 261–318. Springer, Dordrecht (2006). arXiv:hep-th/0412219v1

    Chapter  Google Scholar 

  38. Zabrodin, A.: Random matrices and Laplacian growth. arXiv:0907.4929v1 [math-ph]

Download references

Acknowledgements

We would like to thank Philip Kennerberg for sharing his MATLAB-code and discussing the practicalities in simulating the process. We also thank the referees for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haakan Hedenmalm.

Additional information

The second author is supported by the Göran Gustafsson Foundation (KVA) and Vetenskapsrådet (VR).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haimi, A., Hedenmalm, H. The Polyanalytic Ginibre Ensembles. J Stat Phys 153, 10–47 (2013). https://doi.org/10.1007/s10955-013-0813-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0813-x

Keywords

Navigation