Skip to main content
Log in

Maximum of the Characteristic Polynomial of the Ginibre Ensemble

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We compute the leading asymptotics for the maximum of the (centered) logarithm of the absolute value of the characteristic polynomial, denoted \(\Psi _N\), of the Ginibre ensemble as the dimension of the random matrix N tends to \(\infty \). The method relies on the log-correlated structure of the field \(\Psi _N\) and we obtain the lower-bound for the maximum by constructing a family of Gaussian multiplicative chaos measures associated with certain regularization of \(\Psi _N\) at small mesoscopic scales. We also obtain the leading asymptotics for the dimensions of the sets of thick points and verify that they are consistent with the predictions coming from the Gaussian Free Field. A key technical input is the approach from Ameur et al. (Ann Probab 43(3):1157–1201, 2015) to derive the necessary asymptotics, as well as the results from Webb and Wong (Proc Lond Math Soc (3) 118(5):1017–1056, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We briefly review the definition of the GFF in Sect. 2.1.

  2. A random \(N\times N\) matrix sampled from the Haar measure on the unitary group.

  3. A random \(N\times N\) Hermitian matrix with independent Gaussian entries suitably normalized.

  4. They obtain tightness of the appropriately centered maximum for both real and imaginary part of the logarithm of the characteristic polynomial. See also [42] for the asymptotics of the measures of thick points by a different approach.

  5. See Theorem 1.4 below.

  6. The concept of thick points is crucial to describe the geometric properties of log-correlated fields. Informally, these points corresponds to the extremal values of the field.

  7. That is in the subcritical phase — the critical value being \(\gamma _*=\sqrt{8}\) as in (1.15) or in Theorem 2.2 below.

  8. This means that \(\phi (x)\) is a smooth probability density function which only depends on |x| with compact support in the disk \(\mathbb {D}_{\epsilon _0}\). Note that we can work with any such mollifier.

  9. This follows from the fact that since the mollifier \(\phi \) is radial and compactly supported, \(\psi _\epsilon (z) = \log |z|\) for all \(|z| \ge \epsilon \) and for any \(\epsilon >0\).

  10. We chose this unusual normalization in order to match with formula (1.10).

  11. This formula for the limiting covariance in the Rider–Viràg CLT holds for test functions which are harmonic outside of \(\mathbb {D}\) [53]. In particular, it can be applied to (2.1) if \(z\in \mathbb {D}\) and \(\epsilon >0\) is small enough. Then, one deduces the counterpart of (2.7)–(2.8) holds for the field (2.3) which is supported in \(\mathbb {D}_{2\epsilon _0}\) by linearity.

  12. Note that our normalization does not match with the standard convention for log-correlated fields used in [22, Section 3]. Actually, we apply [22, Theorem 3.4] to the field \(\mathrm {X}(z)= \sqrt{2} \mathrm {X}(g_N^z)\) — this explains why the critical value is \(\gamma ^*= \sqrt{8}\) as well as the factor \(\frac{\gamma ^*}{2}\) in (2.11).

  13. Note that our approximations are more precise than in [4].

  14. Note that we have \(\Delta \left( \log \sqrt{1+|x|^2} \right) = \frac{4}{(1+|x|^2)^2} >0\) for \(x\in \mathbb {C}\).

  15. Here we used that \(\chi _z=1\) on \(\mathbb {D}(z;\delta )\) so that \(\overline{\partial }f=0\) and that \(\overline{\partial }f = \overline{\partial }U\) since \(U-f \in \mathscr {P}_N\) by definition of U.

References

  1. Akemann, G., Vernizzi, G.: Characteristic polynomials of complex random matrix models. Nuclear Phys. B 660(3), 532–556 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Ameur, Y., Hedenmalm, H., Makarov, N.: Berezin transform in polynomial bergman spaces. Commun. Pure Appl. Math. 63(12), 1533–1584 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Ameur, Y., Hedenmalm, H., Makarov, N.: Fluctuations of eigenvalues of random normal matrices. Duke Math. J. 159(1), 31–81 (2011)

    MathSciNet  MATH  Google Scholar 

  4. Ameur, Y., Hedenmalm, H., Makarov, N.: Random normal matrices and ward identities. Ann. Probab. 43(3), 1157–1201 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Arguin, L.-P., Belius, D., Bourgade, P.: Maximum of the characteristic polynomial of random unitary matrices. Commun. Math. Phys. 349(2), 703–751 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Arguin, L.-P., Belius, D., Bourgade, P., Radziwiłł, M., Soundararajan, K.: Maximum of the Riemann zeta function on a short interval of the critical line. Commun. Pure Appl. Math. 72(3), 500–535 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Aru, J.: Gaussian Multiplicative Chaos through the Lens of the 2d Gaussian Free Field. arXiv:1709.04355

  8. Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: Local density for two-dimensional one-component plasma. Commun. Math. Phys. 356(1), 189–230 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: The two-dimensional coulomb plasma: quasi-free approximation and central limit theorem. Adv. Theor. Math. Phys 23(4), 841–1002 (2019). arXiv:1609.08582

    Google Scholar 

  10. Ben Arous, G., Zeitouni, O.: Large deviations from the circular law. ESAIM Probab. Statist. 2, 123–134 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Berestycki, N.: An elementary approach to Gaussian multiplicative chaos. Electron. Commun. Probab. 22(27), 12 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Berestycki, N., Webb, C., Wong, M.D.: Random hermitian matrices and Gaussian multiplicative chaos. Probab. Theory Related Fields 172(1–2), 103–189 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Berman, R.J.: Bergman kernels for weighted polynomials and weighted equilibrium measures of \({\mathbb{C}}^n\). Indiana Univ. Math. J. 58(4), 1921–1946 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Berman, R.J.: Sharp asymptotics for Toeplitz determinants and convergence towards the Gaussian free field on Riemann surfaces. Int. Math. Res. Not. IMRN 22, 5031–5062 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Bolthausen, E., Deuschel, J.-D., Giacomin, G.: Entropic repulsion and the maximum of the two-dimensional harmonic. Ann. Probab. 29(4), 1670–1692 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Bordenave, C., Chafaï, D.: Lecture notes on the circular law. In: Modern Aspects of Random Matrix Theory, vol. 72 of Proceedings of Symposia in Applied Mathematics, pp. 1–34. American Mathematical Society, Providence (2014)

  17. Bourgade, P., Yau, H.-T., Yin, J.: Local circular law for random matrices. Probab. Theory Relat. Fields 159(3–4), 545–595 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Charlier, C.: Asymptotics of Hankel determinants with a one-cut regular potential and Fisher-Hartwig singularities. Int. Math. Res. Not. IMRN 24, 7515–7576 (2019)

    MathSciNet  Google Scholar 

  19. Charlier, C., Gharakhloo, R.: Asymptotics of Hankel determinants with a Laguerre–Type or Jacobi–Type potential and Fisher–Hartwig singularities. arXiv:1902.08162

  20. Chhaibi, R., Madaule, T., Najnudel, J.: On the maximum of the \({\rm C}\beta {\rm E}\) field. Duke Math. J. 167(12), 2243–2345 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Chhaibi, R., Najnudel, J.: On the circle, \(GMC^\gamma = \varprojlim C\beta E_n\) for \(\gamma = \sqrt{\frac{2}{\beta }},(\gamma \le 1 )\). arXiv:1904.00578

  22. Claeys, T., Fahs, B., Lambert, G., Webb, C.: How much can the eigenvalues of a random hermitian matrix fluctuate? arXiv:1906.01561

  23. Cook, N., Zeitouni, O.: Maximum of the Characteristic Polynomial for a Random Permutation Matrix. Commun. Pure Appl. Math. 73(8), 1660–1731 (2020) arXiv:1806.07549

  24. Deift, P., Its, A., Krasovsky, I.: On the asymptotics of a Toeplitz determinant with singularities. In Random matrix theory, interacting particle systems, and integrable systems, vol. 65 of Mathematical Sciences Research Institute Publications, pp. 93–146. Cambridge University Press, New York (2014)

    MATH  Google Scholar 

  25. Duplantier, B., Sheffield, S.: Liouville quantum gravity and KPZ. Invent. Math. 185(2), 333–393 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Forrester, P.J., Rains, E.M.: Matrix averages relating to Ginibre ensembles. J. Phys. A 42(38), 385205 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Fyodorov, Y.V., Bouchaud, J.-P.: Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential. J. Phys. A 41(37), 372001 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Fyodorov, Y .V., Keating, J .P.: Freezing transitions and extreme values: random matrix theory, and disordered landscapes. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci 372, 20120503 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Fyodorov, Y.V., Khoruzhenko, B.A.: On absolute moments of characteristic polynomials of a certain class of complex random matrices. Comm. Math. Phys. 273(3), 561–599 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Fyodorov, Y.V., Simm, N.J.: On the distribution of the maximum value of the characteristic polynomial of GUE random matrices. Nonlinearity 29(9), 2837–2855 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Harper, A.J.: On the partition function of the Riemann zeta function, and the Fyodorov–Hiary–Keating conjecture. arXiv:1906.05783

  33. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes, Vol. 51 of University Lecture Series. American Mathematical Society, Providence, RI (2009)

    MATH  Google Scholar 

  34. Hu, X., Miller, J., Peres, Y.: Thick points of the Gaussian free field. Ann. Probab. 38(2), 896–926 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Hughes, C.P., Keating, J.P., O’Connell, N.: On the characteristic polynomial of a random unitary matrix. Commun. Math. Phys. 220(2), 429–451 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Johansson, K.: On fluctuations of eigenvalues of random hermitian matrices. Duke Math. J. 91(1), 151–204 (1998). https://doi.org/10.1215/S0012-7094-98-09108-6

    Article  MathSciNet  MATH  Google Scholar 

  37. Kahane, J.-P.: Sur le chaos multiplicatif. Ann. Sci. Math. Québec 9(2), 105–150 (1985)

    MathSciNet  MATH  Google Scholar 

  38. Keating, J.P., Snaith, N.C.: Random matrix theory and \(\zeta (1/2+it)\). Commun. Math. Phys. 214(1), 57–89 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Kistler, N.: Derrida’s random energy models. From spin glasses to the extremes of correlated random fields. In: Correlated random systems: five different methods, Lecture Notes in Mathematics, vol. 2143, pp. 71–120. Springer, Cham (2015). URL https://mathscinet.ams.org/mathscinet-getitem?mr=3380419

  40. Kostlan, E.: On the spectra of Gaussian matrices. Linear Algebra Appl. 162/164, 385–388 (1992). Directions in matrix theory (Auburn, AL, 1990)

    MathSciNet  MATH  Google Scholar 

  41. Krasovsky, I.V.: Correlations of the characteristic polynomials in the Gaussian unitary ensemble or a singular Hankel determinant. Duke Math. J. 139(3), 581–619 (2007)

    MathSciNet  MATH  Google Scholar 

  42. Lambert, G.: Mesoscopic Central Limit Theorem for the Circular \(\beta \)-ensembles and Applications. arXiv:1902.06611

  43. Lambert, G., Paquette, E.: The law of large numbers for the maximum of almost Gaussian Log-correlated fields coming from random matrices. Probab. Theory Relat. Fields 173(1–2), 157–209 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Lambert, G., Paquette, E.: Strong Approximation of Gaussian \(\beta \)-Ensemble Characteristic Polynomials: The Hyperbolic Regime. arXiv:2001.09042

  45. Lambert, G., Ostrovsky, D., Simm, N.: Subcritical multiplicative chaos for regularized counting statistics from random matrix theory. Commun. Math. Phys. 360(1), 1–54 (2018). https://doi.org/10.1007/s00220-018-3130-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Leblé, T., Serfaty, S.: Fluctuations of two dimensional Coulomb gases. Geom. Funct. Anal. 28(2), 443–508 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Najnudel, J.: On the extreme values of the Riemann zeta function on random Intervals of the critical line. Probab. Theory Relat. Fields 172(1–2), 387–452 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Nikula, M., Saksman, E., Webb, C.: Multiplicative chaos and the characteristic polynomial of the CUE: the \(L^1\)-phase. Trans. Amer. Math. Soc. 373, 3905–3965 (2020). https://doi.org/10.1090/tran/8020

    Article  MathSciNet  MATH  Google Scholar 

  49. Paquette, E., Zeitouni, O.: The maximum of the CUE field. Int. Math. Res. Not. IMRN 16, 5028–5119 (2018)

    MathSciNet  MATH  Google Scholar 

  50. Rhodes, R., Vargas, V.: KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat. 15, 358–371 (2011)

    MathSciNet  MATH  Google Scholar 

  51. Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11, 315–392 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Rhodes, R., Vargas, V.: Gaussian multiplicative chaos and Liouville quantum gravity. In: Schehr, G., Altland, A., Fyodorov, Y., O’Connell, N., Cugliandolo, L.F. (eds) Stochastic processes and random matrices. Lecture notes of the Les Houches Summer School, vol. 104, pp. 548–577. Oxford University Press, Oxford (2017). https://mathscinet.ams.org/mathscinet-getitem?mr=3728724

  53. Rider, B., Virág, B.: The noise in the circular law and the Gaussian free field. Int. Math. Res. Not. IMRN, (2) (2007). https://mathscinet.ams.org/mathscinet-getitem?mr=2361453

  54. Robert, R., Vargas, V.: Gaussian multiplicative chaos revisited. Ann. Probab. 38(2), 605–631 (2010)

    MathSciNet  MATH  Google Scholar 

  55. Saksman, E., Webb, C.: The Riemann Zeta Function and Gaussian Multiplicative Chaos: Statistics on the Critical Line. arXiv:1609.00027

  56. Serfaty, S.: Systems of points with Coulomb interactions. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Plenary lectures, Vol. I. pp. 935–977. World Science Publications, Hackensack, NJ (2018). https://mathscinet.ams.org/mathscinet-getitem?mr=3966749

  57. Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139(3–4), 521–541 (2007)

    MathSciNet  MATH  Google Scholar 

  58. Webb, C.: On the Logarithm of the Characteristic Polynomial of the Ginibre Ensemble. arXiv:1507.08674

  59. Webb, C.: The characteristic polynomial of a random unitary matrix and Gaussian multiplicative chaos-the \(L^2\)-phase. Electron. J. Probab. 20, 104 (2015)

    MATH  Google Scholar 

  60. Webb, C., Wong, M.D.: On the moments of the characteristic polynomial of a Ginibre random matrix. Proc. Lond. Math. Soc. (3) 118(5), 1017–1056 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

G.L. is supported by the University of Zurich Forschungskredit Grant FK-17-112 and by the Grant SNSF Ambizione S-71114-05-01. G.L. wishes to thank P. Bourgade for insightful discussions about the problem considered here and the referee for interesting comments which helped to improve the presentation of this article and for pointing out several references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaultier Lambert.

Additional information

Communicated by P. Deift

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambert, G. Maximum of the Characteristic Polynomial of the Ginibre Ensemble. Commun. Math. Phys. 378, 943–985 (2020). https://doi.org/10.1007/s00220-020-03813-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03813-1

Navigation