Skip to main content
Log in

Almost Gibbsianness and Parsimonious Description of the Decimated 2d-Ising Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we complete and provide details for the existing characterizations of the decimation of the Ising model on \(\mathbb{Z}^{2}\) in the generalized Gibbs context. We first recall a few features of the Dobrushin program of restoration of Gibbsianness and present the construction of global specifications consistent with the extremal decimated measures. We use them to prove that these renormalized measures are almost Gibbsian at any temperature and to analyse in detail its convex set of DLR measures. We also recall the weakly Gibbsian description and complete it using a potential that admits a quenched correlation decay, i.e. a well-defined configuration-dependent length beyond which this potential decays exponentially. We use these results to incorporate these decimated measures in the new framework of parsimonious random fields that has been recently developed to investigate probability aspects related to neurosciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. When Ω is equipped with the product topology, see [11, 17].

  2. We briefly write μ[f] for the expectation \(\mathbb{E}_{\mu}[f]\) of a measurable function f under a measure μ.

  3. Introduced by Dobrushin [6], Lanford and Ruelle [26] in the late 60’s.

  4. Formally introduced by Föllmer [14] and Preston [40] in the mid 70’s.

  5. Taken as definition of consistency by Kozlov [24].

  6. For standard Borel spaces, see [17] or the constructions of Goldstein [18], Preston [41] and Sokal [48].

  7. There exist indeed specifications γ for which \(\mathcal{G}(\gamma)=\emptyset\), see [17, 28].

  8. One mostly reserves the terminology “phase” to the t.i. extremal elements of \(\mathcal{G}(\gamma)\).

  9. More precisely, the set \(\mathcal{G}(\gamma)\) is even a non-empty compact convex subset of \(\mathcal{M}_{1}^{+}\) [17].

  10. Tail-measurability is required to insure that the partition function is well-defined.

  11. Such a potential is also called a lattice-gas potential, see e.g. the terminology of [23].

  12. They prove that there exists disjoint sets Ω +,Ω Ω such that ν +(Ω +)=ν (Ω )=1 and a translation invariant interaction Φ with Ω Φ =Ω +Ω such that ν + and ν are weakly Gibbs for the pair (Φ,Ω Φ ). In their framework ν + and ν share the same interaction but concentrate on different configurations.

  13. In general, and in particular in our set-up, this set is always a Choquet simplex, i.s. a convex set where each element is determined by a unique convex combination of the extremal elements, see e.g. [17, 28]. Moreover, these extreme points are the DLR measures that are trivial on the tail σ-algebra \(\mathcal{F}_{\infty}\).

  14. Consider e.g. a path that essentially avoids all contours of the configuration [33].

  15. It is known that at β c the correlations decay sub-exponentially according to a power law, while typical exponentially decaying scenarii for the behavior of the systems in certain regimes are studied in [45].

  16. The former is automatically of non-zero \(\nu^{+}_{\beta}\)-measure in our topological settings and thus modifying conditional probabilities on a negligible set cannot make them continuous, see also [28, 53].

  17. One sometimes speaks about a constrained or hidden phase transitions.

  18. This set has been originally introduced in [3] to get correlation estimates for the +-phase.

  19. The conditioning acts as an external field h 2i =+1 on the even sites, known to lead to uniqueness with the +-phase as an equilibrium state.

  20. A similar construction can be done for any γ monotonicity-preserving and right- or left-continuous.

  21. One says that the configuration is frozen in ω on S c.

  22. See e.g. [12], p. 1304 or proceed like in pp. 1294–1295.

  23. The freezing acts as an all positive/negative magnetic field, for which uniqueness holds from Theorem 1.

  24. A more complete variational principle has been established in [25], but we do not need it here.

  25. A complete interpretation and characterization in the original Gibbsian context can be also found in [23].

  26. Consistent with a t.i. UAC potential. It does not imply its existence for t.i. quasilocal measure, because the potential built by Kozlov from a t.i. quasilocal specification is not necessarily translation invariant [25].

  27. Introduced by Pfister [37] to state general large deviation principles.

  28. See e.g. [53], p. 970 for a one-line proof.

  29. To be true, this re-writing requires absolute convergence, checked next section.

  30. See e.g. Proposition 4.24 in [11]. Here, we have even more because the specification is right-continuous.

  31. This is not the case if one removes the condition ki.

References

  1. Aizenman, M.: Translation-invariance and instability of phase coexistence in the two-dimensional Ising system. Commun. Math. Phys. 73(1), 83–94 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  2. Bricmont, J., Kupiainen, A., Lefevere, R.: Renormalization group pathologies and the definition of Gibbs states. Commun. Math. Phys. 194(2), 359–388 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Burton, R.M., Steif, J.E.: Quite weak Bernoulli with exponential rate and percolation for random fields. Stoch. Proc. Appl. 58(35) (1995)

  4. Cassandro, M., Galves, A., Löcherbach, E.: Partially observed Markov random fields are variable neighborhood random fields. J. Stat. Phys. 174(4), 795–807 (2012)

    Article  ADS  Google Scholar 

  5. Coquille, L., Velenik, Y.: A finite-volume version of Aizenman-Higuchi theorem for the 2d-Ising model. Probab. Theory Relat. Fields 153, 25–44 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dobrushin, R.L.: The description of a random field by means of conditional probabilities and conditions of its regularity. Theory Probab. Appl. 13, 197–224 (1968)

    Article  Google Scholar 

  7. Dobrushin, R.L.: A Gibbsian representation for non-Gibbsian fields. In: Workshop ‘Probability and Physics’, Renkum (1995)

    Google Scholar 

  8. Dobrushin, R.L., Shlosman, S.B.: Large and moderate deviation in the Ising model. In: Probability Contributions of Statistical Mechanics. Advances in Soviet Mathematics, vol. 20, pp. 91–221. AMS, Providence (1991)

    Google Scholar 

  9. Dobrushin, R.L., Shlosman, S.B.: “Non-Gibbsian” states and their Gibbs description. Commun. Math. Phys. 200(1), 125–179 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Dynkin, E.B.: Sufficient statistics and extreme points. Ann. Probab. 6(5), 705–730 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fernández, R.: Gibbsianness and non-Gibbsianness in lattice random fields. In: Bovier, A., van Enter, A.C.D., den Hollander, F., Dunlop, F. (eds.) Mathematical Statistical Physics. Proceedings of the 83rd Les Houches Summer School, July 2005. Elsevier, Amsterdam (2006)

    Google Scholar 

  12. Fernández, R., Pfister, C.-E.: Global specifications and non-quasilocality of projections of Gibbs measures. Ann. Probab. 25(3), 1284–1315 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fernández, R., Le Ny, A., Redig, F.: Variational principle and almost quasilocality for renormalized measures. J. Stat. Phys. 111(1/2), 465–478 (2003)

    Article  MATH  Google Scholar 

  14. Föllmer, H.: Phase transition and Martin boundary In: Séminaires de Probabilités IX, Université de Strasbourg. Lecture Notes in Mathematics, vol. 465, pp. 305–317. Springer, Berlin (1975)

    Chapter  Google Scholar 

  15. Föllmer, H.: On the global Markov property. In: Streit, L. (ed.) Quantum Fields: Algebras, Processes, pp. 293–302. Springer, New York (1980)

    Chapter  Google Scholar 

  16. Galves, A., Löcherbach, E.: Stochastic chains with memory of variable length. In: Festschrift in Honour of the 75th Birthday of Jorma Rissanen. Tampere University Press, Tampere (2008)

    Google Scholar 

  17. Georgii, H.O.: In: Gibbs Measures and Phase Transitions. De Gruyter Studies in Mathematics, vol. 9. De Gruyter, Berlin (1988). See also, 2nd edn. (2011)

    Chapter  Google Scholar 

  18. Goldstein, S.: A note on specifications. Z. Wahrscheinlichkeitstheor. Verw. Geb. 46, 45–51 (1978)

    Article  MATH  Google Scholar 

  19. Goldstein, S.: Remarks on the global Markov property. Commun. Math. Phys. 74 (1980)

  20. Griffiths, R.B.: Peierls proof of spontaneous magnetization in a two-dimensional Ising ferromagnet. Phys. Rev. (2) 136(136), A437–A439 (1964)

    Article  ADS  Google Scholar 

  21. Higuchi, Y.: On the absence of non-translation-invariant Gibbs states for the two-dimensional Ising model. In: Random Fields, Esztergom, 1979, vol. II, pp. 517–534 (1981)

    Google Scholar 

  22. Ising, E.: Beitrag sur Theorie des Ferromagnetismes. Z. Phys. 31, 253–258 (1925)

    Article  ADS  Google Scholar 

  23. Israel, R.B.: Convexity in the Theory of Lattice Gases. Princeton University Press, Princeton (1979)

    MATH  Google Scholar 

  24. Kozlov, O.: Gibbs description of a system of random variables. Probl. Inf. Transm. 10, 258–265 (1974)

    Google Scholar 

  25. Külske, C., Le Ny, A., Redig, F.: Relative entropy and variational properties of generalized Gibbsian measures. Ann. Probab. 32(2), 1691–1726 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lanford, O.E., Ruelle, D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys. 13, 194–215 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  27. Le Ny, A.: Decimation on the two-dimensional Ising model: non-Gibbsianness at low temperature. almost Gibbsianness or weak Gibbsianness? In: Fascicule de Probabilités, Rennes, 1998. Publ. Inst. Rech. Math. Rennes (1998). 71 pp.

    Google Scholar 

  28. Le Ny, A.: Introduction to generalized Gibbs measures. Ens. Mat. 15 (2008)

  29. Lefevere, R.: Variational principle for some renormalized measures. J. Stat. Phys. 96(1–2), 109–133 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Löcherbach, E., Orlandi, E.: Neighborhood radius estimation for variable-neighborhood random fields. Stoch. Process. Appl. 121(9), 2151–2185 (2011)

    Article  MATH  Google Scholar 

  31. Lörinczi, J., Maes, C., Vande Velde, K.: Transformations of Gibbs measures. Probab. Theory Relat. Fields 112, 121–147 (1998)

    Article  MATH  Google Scholar 

  32. Maes, C., Vande Velde, K.: Relative energies for non-Gibbsian states. Commun. Math. Phys. 189, 277–286 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Maes, C., Redig, F., Shlosman, S., Van, A., Percolation, M.: Path large deviations and weak Gibbsianity. Commun. Math. Phys. 209(8), 517–545 (1999)

    ADS  Google Scholar 

  34. Maes, C., Redig, F., Van Moffaert, A.: Almost Gibbsian versus weakly Gibbsian. Stoch. Process. Appl. 79(1), 1–15 (1999)

    Article  MATH  Google Scholar 

  35. Maes, C., Redig, F., Van Moffaert, A.: The restriction of the Ising model to a layer. J. Stat. Phys. 94, 893–912 (1999)

    Article  ADS  MATH  Google Scholar 

  36. Peierls, R.B.: On Ising’s model of ferromagnetism. Proc. Camb. Philos. Soc. 32 (1936)

  37. Pfister, C.-E.: Thermodynamical aspects of classical lattice systems. In: In and Out of Equilibrium. Probability with a Physical Flavor. Progress in Probability, pp. 393–472 (2002)

    Chapter  Google Scholar 

  38. Pirogov, S.A., Sinai, Y.G.: Phase diagrams for classical lattice systems. Theor. Math. Phys. 25, 1185–1192 (1976)

    Article  Google Scholar 

  39. Pirogov, S.A., Sinai, Y.G.: Phase diagrams for classical lattice systems. Theor. Math. Phys. 26, 39–49 (1976)

    Article  MathSciNet  Google Scholar 

  40. Preston, C.: Random Fields. Lectures Notes in Mathematics, vol. 534. Springer, Berlin (1976)

    MATH  Google Scholar 

  41. Preston, C.: Construction of specifications. In: Streit, L. (ed.) Quantum Fields—Algebras, Processes. Bielefeld Symposium, 1978, pp. 269–282. Springer, Wien (1980)

    Chapter  Google Scholar 

  42. Rissanen, J.: A universal data compression system. IEEE Trans. Inf. Theory 29, 656–664 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  43. Russo, L.: The infinite cluster method in the two-dimensional Ising model. Commun. Math. Phys. 67(3), 251–266 (1979)

    Article  ADS  Google Scholar 

  44. Schonmann, R.H.: Projections of Gibbs measures may be non-Gibbsian. Commun. Math. Phys. 124, 1–7 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Schonmann, R.H., Shlosman, S.B.: Complete analyticity for 2D Ising completed. Commun. Math. Phys. 170, 453–482 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Shlosman, S.B.: Path large deviation and other typical properties of the low-temperature models, applications to weakly Gibbs states. Markov Process. Relat. Fields 6, 121–133 (2000)

    MathSciNet  MATH  Google Scholar 

  47. Sinai, Y.G.: Theory of Phase Transition: Rigorous Results. Pergamon, Oxford (1982)

    MATH  Google Scholar 

  48. Sokal, A.D.: Existence of compatible families of proper regular conditional probabilities. Z. Wahrscheinlichkeitstheor. Verw. Geb. 56, 537–548 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sullivan, W.G.: Potentials for almost Markovian random fields. Commun. Math. Phys. 33, 61–74 (1976)

    Article  ADS  Google Scholar 

  50. Syozi, I.: Transformations of Ising models. In: Domb, C., Green, M.S. (eds.) Phase Transitions and Critical Phenomena, vol. 1. Academic Press, New York (1972)

    Google Scholar 

  51. van Enter, A.C.D., Shlosman, S.B.: (Almost) Gibbsian description of the sign fields of SOS fields. J. Stat. Phys. 92(3/4), 353–368 (1998)

    Article  MATH  Google Scholar 

  52. van Enter, A.C.D., Verbitskiy, E.A.: On the variational principle for generalized Gibbs measures. Markov Process. Relat. Fields 10, 411–434 (2004)

    MATH  Google Scholar 

  53. van Enter, A.C.D., Fernández, R., Sokal, A.D.: Regularity properties and pathologies of position-space R.G. transformations: scope and limitations of Gibbsian theory. J. Stat. Phys. 72, 879–1167 (1993)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Le Ny.

Additional information

A. Le Ny is on leave from Université de Paris-Sud, Laboratoire de Mathématiques d’Orsay (LMO UMR CNRS 8628).

Work supported by the ANR project ANR-JCJC-0139-RANDYMECA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Ny, A. Almost Gibbsianness and Parsimonious Description of the Decimated 2d-Ising Model. J Stat Phys 152, 305–335 (2013). https://doi.org/10.1007/s10955-013-0773-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0773-1

Keywords

Navigation