Skip to main content
Log in

A Curie-Weiss Model with Dissipation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider stochastic dynamics for a spin system with mean field interaction, in which the interaction potential is subject to noisy and dissipative stochastic evolution. We show that, in the thermodynamic limit and at sufficiently low temperature, the magnetization of the system has a time periodic behavior, despite of the fact that no periodic force is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Budhiraja, A., Del Moral, P., Rubenthaler, S.: Discrete time Markovian agents interacting through a potential. ESAIM, Probab. Stat. (2013). doi:10.1051/ps/2012014

    MATH  Google Scholar 

  2. Carletti, T., Villari, G.: A note on existence and uniqueness of limit cycles for Liénard systems. J. Math. Anal. Appl. 307(2), 763–773 (2005). doi:10.1016/j.jmaa.2005.01.054

    Article  MathSciNet  MATH  Google Scholar 

  3. Dai Pra, P., Runggaldier, W.J., Sartori, E., Tolotti, M.: Large portfolio losses: a dynamic contagion model. Ann. Appl. Probab. 19(1), 347–394 (2009). doi:10.1214/08-AAP544

    Article  MathSciNet  MATH  Google Scholar 

  4. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1(6), 445–466 (1961)

    Article  ADS  Google Scholar 

  5. Garcia-Ojalvo, J., Elowitz, M., Strogatz, S.: Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci. USA 101(30), 10955–10960 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Giacomin, G., Pakdaman, K., Pellegrin, X., Poquet, C.: Transitions in Active Rotator Systems: Invariant Hyperbolic Manifold Approach. SIAM J. Math. Anal. 44(6), 4165–4194 (2012). doi:10.1137/110846452

    Article  MathSciNet  MATH  Google Scholar 

  7. Giesecke, K., Spiliopoulos, K., Sowers, R.: Default clustering in large portfolios: Typical events. Ann. Appl. Probab. 23(1), 348–385 (2013). doi:10.1214/12-AAP845. http://projecteuclid.org/euclid.aoap/1359124389

    Article  MATH  Google Scholar 

  8. Gottlieb, A.D.: Markov transitions and the propagation of chaos. In: ProQuest LLC, Ann Arbor, MI. Ph.D. Thesis, University of California, Berkeley (1998)

    Google Scholar 

  9. Graham, C.: McKean-Vlasov Itô-Skorohod equations, and nonlinear diffusions with discrete jump sets. Stoch. Process. Appl. 40(1), 69–82 (1992). doi:10.1016/0304-4149(92)90138-G

    Article  MATH  Google Scholar 

  10. Kolokoltsov, V.: Nonlinear Markov Processes and Kinetic Equations vol. 182. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  11. Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392(6), 321–424 (2004)

    Article  ADS  Google Scholar 

  12. McMillen, D., Kopell, N., Hasty, J., Collins, J.: Synchronizing genetic relaxation oscillators by intercell signaling. Proc. Natl. Acad. Sci. 99(2), 679–684 (2002)

    Article  ADS  Google Scholar 

  13. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50(10), 2061–2070 (1962)

    Article  Google Scholar 

  14. Pakdaman, K., Perthame, B., Salort, D.: Dynamics of a structured neuron population. Nonlinearity 23(1), 55–75 (2010). doi:10.1088/0951-7715/23/1/003

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Pakdaman, K., Perthame, B., Salort, D.: 2011, Relaxation and self-sustained oscillations in the time elapsed neuron network model. arXiv:1109.3014

  16. Prindle, A., Samayoa, P., Razinkov, I., Danino, T., Tsimring, L., Hasty, J.: A sensing array of radically coupled genetic ‘biopixels’. Nature 481, 39–44 (2011). doi:10.1038/nature10722

    Article  ADS  Google Scholar 

  17. Sabatini, M., Villari, G.: Limit cycle uniqueness for a class of planar dynamical systems. Appl. Math. Lett. 19(11), 1180–1184 (2006). doi:10.1016/j.aml.2005.09.017

    Article  MathSciNet  MATH  Google Scholar 

  18. Schweitzer, F.: Collective Dynamics in the Natural and Social Sciences. Brownian Agents and Active Particles. Springer Series in Synergetics. Springer, Berlin (2003), with a foreword by J. Doyne Farmer

    Google Scholar 

Download references

Acknowledgements

We are grateful to G. Giacomin for deep comments and suggestions.

The authors acknowledge the financial support of the Research Grant of the Ministero dell’Istruzione, dell’Università e della Ricerca: PRIN 2009, Complex Stochastic Models and their Applications in Physics and Social Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Dai Pra.

Appendix A: Proof of Theorem 2.1

Appendix A: Proof of Theorem 2.1

For \(\mathcal{X}\) a Polish space, denote by \(\mathcal{P}(\mathcal {X})\) the space of probability measures on the Borel sets of \(\mathcal {X}\); equip \(\mathcal{P}(\mathcal{X})\) with the topology of weak convergence, which makes it a Polish space, too. As in Sect. 2, let P N be the empirical measure of the N-particle system. We may assume that the \(\{-1,1\}\times\mathbb {R}\)-valued processes (s j ,λ j ) have càdlàg trajectories (i.e., trajectories that are right-continuous with limits from the left). Consequently, P N is a probability measure on the Borel sets of \(D:= D([0,\infty),\{-1,1\}\times\mathbb{R})\), the space of \(\{-1,1\}\times\mathbb{R}\)-valued càdlàg functions equipped with the Skorohod topology.

The strategy of proof, here, is to represent both the microscopic and the macroscopic model as solutions of certain stochastic differential equations in order to apply results by [9] on propagation of chaos, which implies convergence of empirical measures.

Let η be Lebesgue measure restricted to the Borel sets on the interval (0,2). Let \(((\varOmega,\mathcal{F},\mathbf{P}),(\mathcal {F}_{t})_{t\geq0})\) be a filtered probability space satisfying the usual hypotheses rich enough to carry an independent family \((B_{i},\mathcal{N}_{i})_{i\in\mathbb{N}}\) of one-dimensional \((\mathcal {F}_{t})\)-Brownian motions B i and stationary \((\mathcal {F}_{t})\)-Poisson random measures \(\mathcal{N}_{i}\) with characteristic measure η. For \(N\in\mathbb{N}\), consider the system of Itô-Skorohod equations

$$ \everymath{\displaystyle} \begin{array}{@{}llll} \mathrm {d}\lambda^{N}_{i}(t)= -\alpha\lambda^{N}_{i}(t-)\mathrm {d}{t} + \sigma \mathrm {d}{B}_{i}(t) -\frac{\beta}{N}\sum_{k=1}^{N} \int_{(0,2)} q \bigl(\bigl(s^{N}_{k}(t-), \lambda^{N}_{k}(t-)\bigr),u \bigr) \mathcal{N}_{k}( \mathrm {d}{u},\mathrm {d}{t}), \cr\noalign{\vspace{3pt}} \mathrm {d}{s}^{N}_{i}(t) = \int_{(0,2)} q \bigl( \bigl(s^{N}_{i}(t-),\lambda^{N}_{i}(t-) \bigr),u \bigr) \mathcal{N}_{i}(\mathrm {d}{u},\mathrm {d}{t}), \quad i\in\{1,\ldots,N\}, \end{array} $$
(A.1)

where

$$q\bigl((s,\lambda),u\bigr):= -2h(s)\cdot\mathbf{1}_{(0,1+h(s)\tanh (\lambda ))}(u),\quad(s, \lambda)\in\mathbb{R}^{2},\ u\in(0,2), $$

and h(s):=(−1)∨(s∧1), \(s\in\mathbb{R}\). By Theorem 1.2 in [9], existence and uniqueness of solutions hold in the strong sense for the system of Eqs. (A.1) since its coefficients are globally Lipschitz continuous; the jump coefficient, in particular, satisfies the L 1 Lipschitz assumption of the theorem. Clearly, if s∈{−1,1}, then h(s)=s, h(s)tanh(λ)=tanh(sλ), and

$$\int_{(0,2)} q\bigl((s,\lambda),u\bigr) \eta(\mathrm {d}{u}) = -2 \bigl(s+\tanh(\lambda) \bigr). $$

Thanks to the choice of the jump heights, if (s N(0),λ N(0)) is such that \(s^{N}_{i}(0)\in\{-1,1\}\), then \(s^{N}_{i}(t)\in\{-1,1\}\) for all t≥0. Let us fix a sequence of initial conditions \((s^{N}(0),\lambda^{N}(0))_{N\in\mathbb{N}}\) such that s N(0)∈{−1,1}N for all \(N\in\mathbb{N}\) and \((\mathbf{P}\circ(s^{N}(0),\lambda^{N}(0))^{-1})_{N\in\mathbb{N}}\) is μ-chaotic for some \(\mu\in\mathcal{P}(\{-1,1\}\times\mathbb{R})\). The solution process (s N,λ N) is then a \(\{-1,1\} ^{N}\times\mathbb{R}^{N}\)-valued Markov process. Comparing its infinitesimal generator (cf. Eq. (1.2) in [9]) with Eq. (2.3) above shows that (s N,λ N) is a realization of the N-particle microscopic model. To prove Theorem 2.1 we thus have to prove convergence of the empirical measures \(P^{N} := \sum_{i=1}^{N} \delta _{(s^{N}_{i},\lambda^{N}_{i})}\) associated with the solutions of (A.1).

Define a function \(\bar{b}\!: \mathcal{P}(\mathbb{R}^{2}) \rightarrow\mathbb{R}\) by

$$\bar{b}(\nu):= 2\beta\cdot\int_{\mathbb{R}^{2}} \bigl(h(s) + \tanh( \lambda) \bigr)\nu(\mathrm {d}{s}, \mathrm {d}\lambda). $$

Notice that \(\bar{b}\) is Lipschitz continuous with respect to the bounded Lipschitz (or Dudley) metric on \(\mathcal{P}(\mathbb{R}^{2})\) as well as with respect to the Wasserstein-1 (or Lipschitz) metric on \(\mathcal{P}_{1}(\mathbb{R}^{2})\), the space of probability measures with finite first moments. By Theorem 2.1 in [9], existence and uniqueness of solutions hold in the strong sense for the McKean-Vlasov Itô-Skorohod equation

$$ \everymath{\displaystyle} \begin{array}{@{}rlll} \mathrm {d}\varLambda(t) &=& -\alpha \varLambda(t)dt + \sigma \mathrm {d}{B}_{1}(t) + \bar{b}(P_{t})\mathrm {d}{t}, \cr\noalign{\vspace{3pt}} \mathrm {d}\varSigma(t) &=& \int_{(0,2)} q \bigl(\bigl(\varSigma(t-), \varLambda(t)\bigr),u \bigr) \mathcal{N}_{1}(\mathrm {d}{u},\mathrm {d}{t}), \cr\noalign{\vspace{3pt}} P_{t} &=& \operatorname {law}\bigl(\varSigma(t),\varLambda(t)\bigr). \end{array} $$
(A.2)

Assume that \(P_{0} = \mu= \operatorname {law}(\varSigma(0),\varLambda(0))\). Set \(P:= \operatorname {law}(\varSigma,\varLambda)\) and observe that \(P \in \mathcal {P}(D)\). Comparison of infinitesimal generators yields that the solution (Σ,Λ) of (A.2) is a realization of the nonlinear Markov process given by Eq. (2.11). Moreover, the \(\mathcal{P}(\{-1,1\}\times\mathbb{R})\)-valued process (P t ) t≥0 coincides with the solution of Eq. (2.9) with initial condition P 0.

For \(N\in\mathbb{N}\), consider the system of Itô-Skorohod equations

$$ \everymath{\displaystyle} \begin{array}{@{}rlll} \mathrm {d}\bar{\lambda}^{N}_{i}(t) &=& -\alpha\bar{\lambda}^{N}_{i}(t)\mathrm {d}{t} + \sigma \mathrm {d}{B}_{i}(t) + \bar{b}\bigl(\bar{P}^{N}_{t}\bigr) \mathrm {d}{t}, \cr\noalign{\vspace{3pt}} \mathrm {d}\bar{s}^{N}_{i}(t) &=& \int_{(0,2)} q \bigl(\bigl(\bar{s}^{N}_{i}(t-),\bar{\lambda}^{N}_{i}(t) \bigr),u \bigr) \mathcal{N}_{i}(\mathrm {d}{u},\mathrm {d}{t}),\quad i\in\{1,\ldots ,N\}, \end{array} $$
(A.3)

where \(\bar{P}^{N}_{t}:= \sum_{i=1}^{N}\delta_{\bar{(\lambda }^{N}_{i}(t),\bar{s}^{N}_{i}(t))}\) is the empirical measure of the solution at time t. Notice that \(\bar{\lambda}^{N}_{i}(t) = \bar {\lambda}^{N}_{i}(t-)\) by continuity of trajectories and that all processes are stochastically continuous. Again by Theorem 1.2 in [9], existence and uniqueness of solutions hold in the strong sense for the system of Eqs. (A.3). If the initial condition \((\bar{s}^{N}(0),\bar{\lambda}^{N}(0))\) for (A.3) is such that \(\bar{s}^{N}_{i}(0) \in\{-1,1\}\), then \(\bar{s}^{N}_{i}(t)\in\{-1,1\}\) for all t≥0. Fix the initial condition at \((\bar{s}^{N}(0),\bar{\lambda}^{N}(0)):= (s^{N}(0),\lambda^{N}(0))\). Since s N(0) takes values in {−1,1}N and by the continuity of Lebesgue integrals, the system of Eqs. (A.3) can be rewritten as

$$ \everymath{\displaystyle} \begin{array}{@{}rlll} \mathrm {d}\bar{\lambda}^{N}_{i}(t) &=& -\alpha\bar{\lambda}^{N}_{i}(t-)\mathrm {d}{t} + \sigma \mathrm {d}{B}_{i}(t) -\frac{\beta}{N}\sum_{k=1}^{N} \int_{(0,2)} q \bigl(\bigl(\bar{s}^{N}_{k}(t-), \bar{\lambda}^{N}_{k}(t-)\bigr),u \bigr)\eta(\mathrm {d}{u})\mathrm {d}{t}, \cr\noalign{\vspace{3pt}} \mathrm {d}\bar{s}^{N}_{i}(t) &=& \int_{(0,2)} q \bigl(\bigl(\bar{s}^{N}_{i}(t-),\bar{\lambda}^{N}_{i}(t-) \bigr),u \bigr) \mathcal{N}_{i}(\mathrm {d}{u},\mathrm {d}{t}),\quad i\in\{1,\ldots ,N\}. \end{array} $$
(A.4)

Set \(\bar{P}^{N}\doteq\sum_{i=1}^{N} \delta_{(\bar{s}^{N},\bar {\lambda}^{N})}\). By Theorem 4.1 in [9], the sequence \((\operatorname {law}(\bar{s}^{N},\bar{\lambda}^{N}))_{N\in\mathbb{N}}\) is P-chaotic. This implies, by the Tanaka-Sznitman theorem (for instance, Theorem 3.2 in [8]), that the sequence \((\bar{P}^{N})_{N\in\mathbb{N}}\) of \(\mathcal{P}(D)\)-valued random variables converges in distribution to the probability measure P. In order to establish convergence of \((P^{N})_{N\in\mathbb{N}}\) to P, it is therefore enough to show that

$$\hat{d}_{bL} \bigl(\operatorname {law}\bigl(P^{N}\bigr),\operatorname {law} \bigl(\bar{P}^{N}\bigr) \bigr) \stackrel{N\to\infty}{\longrightarrow} 0, $$

where \(\hat{d}_{bL}\) is the bounded Lipschitz metric on \(\mathcal {P}(\mathcal{P}(D))\). By definition of \(\hat{d}_{bL}\) and since both P N and \(\bar{P}^{N}\) are empirical measures for processes defined on the same stochastic basis, we have

$$\hat{d}_{bL} \bigl(\operatorname {law}\bigl(P^{N}\bigr),\operatorname {law} \bigl(\bar{P}^{N}\bigr) \bigr) \leq \mathbf{E}\bigl[ d_{bL} \bigl(P^{N},\bar{P}^{N} \bigr) \bigr] \leq\frac{1}{N} \sum_{i=1}^{N} \mathbf{E}\bigl[ d_{Sko} \bigl( \bigl(s^{N}_{i},\lambda^{N}_{i} \bigr), \bigl(\bar{s}^{N}_{i},\bar{\lambda }^{N}_{i}\bigr) \bigr) \bigr], $$

where d bL is the bounded Lipschitz metric on \(\mathcal{P}(D)\) and d Sko the Skorohod metric on D. For \(i\in\mathbb{N}\), let \(\tilde{\mathcal{N}}_{i}\) be the compensated Poisson random measure associated with \(\mathcal{N}_{i}\), that is, \(\tilde{\mathcal {N}}_{i}(\mathrm {d}{u},\mathrm {d}{t}) = \mathcal{N}_{i}(\mathrm {d}{u},\mathrm {d}{t}) - \eta (du)dt\). Then for T>0, i∈{1,…,N}, \(N\in\mathbb{N}\),

Since

it follows that

An application of Gronwall’s lemma yields, for every T>0,

$$\frac{1}{N}\sum_{i=1}^{N}\mathbf{E}\Bigl[\,\sup_{t\in[0,T]} \bigl(\bigl|s^{N}_{i}(t) - \bar{s}^{N}_{i}(t)\bigr| + \bigl|\lambda^{N}_{i}(t) - \bar{\lambda}^{N}_{i}(t)\bigr| \bigr) \Bigr] \stackrel{N\to \infty}{\longrightarrow} 0, $$

which implies the desired convergence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai Pra, P., Fischer, M. & Regoli, D. A Curie-Weiss Model with Dissipation. J Stat Phys 152, 37–53 (2013). https://doi.org/10.1007/s10955-013-0756-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0756-2

Keywords

Navigation