Skip to main content
Log in

On the mean-field equations for ferromagnetic spin systems

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive mean-field equations for a general class of ferromagnetic spin systems with an explicit error bound in finite volumes. The proof is based on a link between the mean-field equation and the free convolution formalism of random matrix theory, which we exploit in terms of a dynamical method. We present three sample applications of our results to Kać interactions, randomly diluted models, and models with an asymptotically vanishing external field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aigner, M., Ziegler, G.M.: Proofs from The Book, sixth edn. Springer, Berlin (2018). Including illustrations by Karl H. Hofmann

  2. Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108(3), 489–526 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  3. Aizenman, M., Barsky, D.J., Fernández, R.: The phase transition in a general class of Ising-type models is sharp. J. Stat. Phys. 47(3–4), 343–374 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  4. Basak, A., Mukherjee, S.: Universality of the mean-field for the Potts model. Probab. Theory Relat. Fields 168(3–4), 557–600 (2017)

    Article  MathSciNet  Google Scholar 

  5. Biskup, M., Chayes, L.: Rigorous analysis of discontinuous phase transitions via mean-field bounds. Commun. Math. Phys. 238(1–2), 53–93 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  6. Biskup, M., Chayes, L., Crawford, N.: Mean-field driven first-order phase transitions in systems with long-range interactions. J. Stat. Phys. 122(6), 1139–1193 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bovier, A., Gayrard, V.: The thermodynamics of the Curie–Weiss model with random couplings. J. Stat. Phys. 72(3–4), 643–664 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bovier, A., Zahradník, M.: The low-temperature phase of Kac-Ising models. J. Stat. Phys. 87(1–2), 311–332 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bovier, A., Zahradník, M.: Cluster expansions and Pirogov–Sinai theory for long range spin systems. Markov Process. Relat. Fields 8(3), 443–478 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Cassandro, M., Presutti, E.: Phase transitions in Ising systems with long but finite range interactions. Markov Process. Relat. Fields 2(2), 241–262 (1996)

    MathSciNet  MATH  Google Scholar 

  11. Chatterjee, S.: In: ProQuest, L.L.C., Ann Arbor, M.I. (eds.) Concentration inequalities with exchangeable pairs. Thesis (Ph.D.)-Stanford University (2005)

  12. Chatterjee, S.: Stein’s method for concentration inequalities. Probab. Theory Relat. Fields 138(1–2), 305–321 (2007)

  13. Chatterjee, S., Dembo, A.: Nonlinear large deviations. Adv. Math. 299, 396–450 (2016)

    Article  MathSciNet  Google Scholar 

  14. Deb, N., Mukherjee, S.: Fluctuations in mean-field Ising models. arXiv:2005.00710 (2020)

  15. Dommers, S., Eichelsbacher, P.: Berry–Esseen bounds in the inhomogeneous Curie–Weiss model with external field. Stoch. Process. Appl. 130(2), 605–629 (2020)

    Article  MathSciNet  Google Scholar 

  16. Ellis, R.S.: Large Deviations Entropy, and Statistical Mechanics. Classics in Mathematics. Springer, Berlin (2006) (Reprint of the 1985 original)

  17. Friedli, S., Velenik, Y.: Statistical Mechanics of Lattice Systems. Cambridge University Press, Cambridge (2018). A concrete mathematical introduction

  18. Fröhlich, J., Rodriguez, P.F.: Some applications of the Lee–Yang theorem. J. Math. Phys. 53(9), 095218 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. Hubbard, J.: Calculation of partition functions. Phys. Rev. Lett. 3, 77–78 (1959)

    Article  ADS  Google Scholar 

  20. Jain, V., Koehler, F., Mossel, E.: The mean-field approximation: Information inequalities, algorithms, and complexity. In S. Bubeck, V. Perchet, and P. Rigollet, editors, Proceedings of the 31st Conference On Learning Theory, volume 75 of Proceedings of Machine Learning Research, pp. 1326–1347. PMLR, 06–09 (2018)

  21. Kac, M., Uhlenbeck, G.E., Hemmer, P.C.: On the van der Waals theory of the vapor–liquid equilibrium. I: Discussion of a one-dimensional model. J. Math. Phys. 4, 216–228 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  22. Lebowitz, J.L., Mazel, A., Presutti, E.: Liquid–vapor phase transitions for systems with finite-range interactions. J. Stat. Phys. 94(5–6), 955–1025 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lebowitz, J.L., Penrose, O.: Rigorous treatment of the van der Waals–Maxwell theory of the liquid–vapor transition. J. Math. Phys. 7, 98–113 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  24. Lee, J.O., Schnelli, K.: Local deformed semicircle law and complete delocalization for Wigner matrices with random potential. J. Math. Phys. 54(10), 103504 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. Lee, T.D., Yang, C.N.: Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87, 410–419 (1952)

    Article  ADS  MathSciNet  Google Scholar 

  26. Mézard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and Beyond, World Scientific Lecture Notes in Physics, vol. 9. World Scientific Publishing Co. Inc, Teaneck (1987)

    MATH  Google Scholar 

  27. Parisi, G.: Statistical field theory, Frontiers in Physics, vol. 66. Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, MA (1988). With a foreword by David Pines

  28. Pastur, L.A.: The spectrum of random matrices. Teoret. Mat. Fiz. 10(1), 102–112 (1972)

    MathSciNet  Google Scholar 

  29. Penrose, O., Lebowitz, J.L.: On the exponential decay of correlation functions. Commun. Math. Phys. 39, 165–184 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  30. Presutti, E.: Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Theoretical and Mathematical Physics. Springer, Berlin (2009)

    MATH  Google Scholar 

  31. Rosenblum, M., Rovnyak, J.: Topics in Hardy Classes and Univalent Functions. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser, Basel (1994)

    Book  Google Scholar 

  32. von Soosten, P., Warzel, S.: Non-ergodic delocalization in the Rosenzweig–Porter model. Lett. Math. Phys. 109(4), 905–922 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  33. von Soosten, P., Warzel, S.: Random characteristics for Wigner matrices. Electron. Commun. Probab. 24, Paper No. 75, 12 (2019)

  34. Stratonovich, R.L.: On a method of calculating quantum distribution functions. Sov. Phys. Doklady 2, 416 (1957)

    ADS  MATH  Google Scholar 

  35. Varadhan, S.R.S.: Asymptotic probabilities and differential equations. Commun. Pure Appl. Math. 19, 261–286 (1966)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank M. Biskup, G. Genovese and S. Warzel for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per von Soosten.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of P.S. is supported by the DFG grant SO 1724/1-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brennecke, C., Soosten, P.v. On the mean-field equations for ferromagnetic spin systems. Lett Math Phys 111, 108 (2021). https://doi.org/10.1007/s11005-021-01450-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01450-w

Keywords

Mathematics Subject Classification

Navigation