Skip to main content
Log in

Asymptotics of a Discrete-Time Particle System Near a Reflecting Boundary

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We examine a discrete-time Markovian particle system on ℕ×ℤ+ introduced in Defosseux (arXiv:1012.0117v1). The boundary {0}×ℤ+ acts as a reflecting wall. The particle system lies in the Anisotropic Kardar-Parisi-Zhang with a wall universality class. After projecting to a single horizontal level, we take the long-time asymptotics and obtain the discrete Jacobi and symmetric Pearcey kernels. This is achieved by showing that the particle system is identical to a Markov chain arising from representations of O(∞) (introduced in Borodin and Kuan (Commun. Pure. Appl. Math. 63(7):831–894, 2010, arXiv:0904.2607)). The fixed-time marginals of this Markov chain are known to be determinantal point processes, allowing us to take the limit of the correlation kernel.

We also give a simple example which shows that in the multi-level case, the particle system and the Markov chain evolve differently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. ℕ denotes the non-negative integers and ℤ+ denotes the positive integers.

  2. Strictly speaking, Proposition 3.11 proves (2) without showing that T ϕ has non-negative entries. A better term would be “signed Markov chain,” but this is not standard terminology. In any case, Proposition 3.1 below will show that for the ϕ studied in this paper, T ϕ is a bona-fide Markov chain.

References

  1. Aptekarev, A., Bleher, P., Kuijlaars, A.: Large n limit of Gaussian random matrices with external source, part II. Commun. Math. Phys. 259(2), 367–389 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in 1+1 dimensions. Commun. Pure Appl. Math. 64(4), 466–537 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borodin, A.: Determinantal point processes. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) The Oxford Handbook of Random Matrix Theory. Oxford University Press, London (2011). http://arxiv.org/abs/0911.1153

    Google Scholar 

  4. Borodin, A., Kuan, J.: Asymptotics of Plancherel measures for the infinite-dimensional unitary group. Adv. Math. 219, 894–931 (2008). arXiv:0712.1848v1

    Article  MathSciNet  MATH  Google Scholar 

  5. Borodin, A., Kuan, J.: Random surface growth with a wall and Plancherel measures for O(∞). Commun. Pure Appl. Math. 63(7), 831–894 (2010). arXiv:0904.2607

    Article  MathSciNet  MATH  Google Scholar 

  6. Defosseux, M.: An interacting particles model and a Pieri-type formula for the orthogonal group. arXiv:1012.0117v1

  7. Hairer, M.: Solving the KPZ equation. arXiv:1109.6811v3

  8. Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  ADS  MATH  Google Scholar 

  9. Kuijlaars, A., Martínez-Finkelshtein, A., Wielonsky, F.: Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights. Commun. Math. Phys. 286(1), 217–275 (2009)

    Article  ADS  MATH  Google Scholar 

  10. Kuijlaars, A., Martínez-Finkelshtein, A., Wielonsky, F.: Non-intersecting squared Bessel paths: critical time and double scaling limit. Commun. Math. Phys. 308(1), 227–279 (2011). arXiv:1011.1278v1

  11. Prähofer, M., Spohn, H.: Scale invariance of the PNG droplet and the airy process. J. Stat. Phys. 108(5–6), 1071–1106 (2002)

    Article  MATH  Google Scholar 

  12. Takeuchi, K., Sano, M.: Universal fluctuations of growing interfaces: evidence in turbulent liquid crystals. Phys. Rev. Lett. 104, 230601 (2010)

    Article  ADS  Google Scholar 

  13. Tracy, C., Widon, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)

    Article  ADS  MATH  Google Scholar 

  14. Tracy, C., Widom, H.: Asymptotics in ASEP with step initial conditions. Commun. Math. Phys. 290(1), 129–154 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Wakita, J., Itoh, H., Matsuyama, T., Matsushita, M.: Self-affinity for the growing interface of bacterial colonies. J. Phys. Soc. Jpn. 66, 67–72 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Alexei Borodin, Manon Defosseux, Ivan Corwin and the referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Kuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuan, J. Asymptotics of a Discrete-Time Particle System Near a Reflecting Boundary. J Stat Phys 150, 398–411 (2013). https://doi.org/10.1007/s10955-012-0681-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0681-9

Keywords

Navigation