Skip to main content
Log in

Dynamics of One-Dimensional Maps and Gurtin–Maccamy’s Population Model. Part I. Asymptotically Constant Solutions

  • Published:
Ukrainian Mathematical Journal Aims and scope

Motivated by the recent work by Ma and Magal [Proc. Amer. Math. Soc. (2021); https://doi.org/10.1090/proc/15629] on the global stability property of the Gurtin–MacCamy’s population model, we consider a family of scalar nonlinear convolution equations with unimodal nonlinearities. In particular, we relate the Ivanov and Sharkovsky analysis of singularly perturbed delay differential equations in [https://doi.org/10.1007/978-3-642-61243-5_5] to the asymptotic behavior of solutions of the Gurtin–MacCamy’s system. According to the classification proposed in [https://doi.org/10.1007/978-3-642-61243-5_5], we can distinguish three fundamental kinds of continuous solutions of our equations, namely, solutions of the asymptotically constant type, relaxation type, and turbulent type. We present various conditions assuring that all solutions belong to the first of these three classes. In the setting of unimodal convolution equations, these conditions suggest a generalized version of the famous Wright’s conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aguerrea, C. Gomez, and S. Trofimchuk, “On uniqueness of semi-wavefronts (Diekmann–Kaper theory of a nonlinear convolution equation re-visited),” Math. Ann., 354, 73–109 (2012).

    Article  MathSciNet  Google Scholar 

  2. F. Brauer, “Perturbations of the nonlinear renewal equation,” Adv. Math., 22, 32–51 (1976).

    Article  MathSciNet  Google Scholar 

  3. K. Cooke and J. Yorke, “Some equations modelling growth processes and gonorrhea epidemics,” Math. Biosci., 16, 75–101 (1973).

    Article  MathSciNet  Google Scholar 

  4. O. Diekmann and H. Kaper, “On the bounded solutions of a nonlinear convolution equation,” Nonlinear Anal., 2, 721–737 (1978).

    Article  MathSciNet  Google Scholar 

  5. A. Ducrot, Q. Griette, Z. Liu, and P. Magal, “Differential equations and population dynamics I: Introductory approaches,” Lecture Notes on Mathematical Modelling in the Life Sciences, Springer, Cham (2022).

  6. F. Dumortier, J. Llibre, and J. C. Artés, Qualitative theory of planar differential systems, Universitext, Springer-Verlag, Berlin (2006).

  7. A. Ivanov, E. Liz, and S. Trofimchuk, “Halanay inequality, Yorke 3/2 stability criterion, and differential equations with maxima,” Tohoku Math. J., 54, 277–295 (2002).

    Article  MathSciNet  Google Scholar 

  8. A. F. Ivanov and A. N. Sharkovsky, “Oscillations in singularly perturbed delay equations,” Dynamics Reported: Expositions in Dynamical Systems, Vol. 1, Springer, Berlin, Heidelberg (1992); https://doi.org/10.1007/978-3-642-61243-5_5.

  9. C. Gomez, H. Prado, and S. Trofimchuk, “Separation dichotomy and wavefronts for a nonlinear convolution equation,” J. Math. Anal. Appl., 420, 1–19 (2014).

    Article  MathSciNet  Google Scholar 

  10. S. A. Gourley and R. Liu, “Delay equation models for populations that experience competition at immature life stages,” J. Different. Equat., 259, 1757–1777 (2015).

    Article  MathSciNet  Google Scholar 

  11. G. Gripenberg, S. Londen, and O. Staffans, “Volterra integral and functional equations,” Encyclopedia of Mathematics and its Appli- cations, Cambridge Univ. Press, Cambridge (1990).

  12. M. E. Gurtin and R. C. MacCamy, “Non-linear age-dependent population dynamics,” Arch. Ration. Mech. Anal., 54, 281–300 (1974).

    Article  MathSciNet  Google Scholar 

  13. K. P. Hadeler and J. Tomiuk, “Periodic solutions of difference-differential equations,” Arch. Ration. Mech. Anal., 65, 82–95 (1977).

    Article  MathSciNet  Google Scholar 

  14. M. A. Krasnoselskii and P. P. Zabreiko, “Geometrical methods of nonlinear analysis,” Grundlehren Math. Wiss., 263 (1984).

  15. E. Liz, “Four theorems and one conjecture on the global asymptotic stability of delay differential equations,” The First 60 Years of Nonlinear Analysis of Jean Mawhin, World Scientific Publ., River Edge, NJ (2004), pp. 117–129.

  16. E. Liz, V. Tkachenko, and S. Trofimchuk, “A global stability criterion for scalar functional differential equations,” SIAM J. Math. Anal., 35, 596–622 (2003).

    Article  MathSciNet  Google Scholar 

  17. E. Liz, M. Pinto, V. Tkachenko, and S. Trofimchuk, “A global stability criterion for a family of delayed population models,” Quart. Appl. Math., 63, 56–70 (2005).

    Article  MathSciNet  Google Scholar 

  18. S.-O. Londen, “On the asymptotic behavior of the bounded solutions of a nonlinear Volterra equation,” SIAM J. Math. Anal., 5, 849–875 (1974).

    Article  MathSciNet  Google Scholar 

  19. S.-O. Londen, “On a non-linear Volterra integral equation,” J. Different. Equat., 14, 106–120 (1973).

    Article  MathSciNet  Google Scholar 

  20. Z. Ma and P. Magal, “Global asymptotic stability for Gurtin–MacCamy’s population dynamics model,” Proc. Amer. Math. Soc., 152, 765–780 (2024); https://doi.org/10.1090/proc/15629.

    Article  MathSciNet  Google Scholar 

  21. P. Magal and S. Ruan, “Center manifolds for semilinear equations with non-dense domain and applications on Hopf bifurcation in age structured models,” Mem. Amer. Math. Soc., 202, Article 951 (2009).

  22. P. Magal and S. Ruan, “Theory and applications of abstract semilinear Cauchy problems,” Appl. Math. Sci., 201, Springer, Cham (2018).

  23. J. Mallet-Paret and R. D. Nussbaum, “Global continuation and asymptotic behavior for periodic solutions of a differential-delay equation,” Ann. Mat. Pura Appl., 145, 33–128 (1986).

    Article  MathSciNet  Google Scholar 

  24. S. Ruan, “Delay differential equations in single species dynamics,” Delay Differential Equations and Applications, NATO Sci. Ser. II Math. Phys. Chem., vol. 205, Springer, Berlin (2006), pp. 477–517.

  25. A. N. Sharkovsky, S. F. Kolyada, A. G. Sivak, and V. V. Fedorenko, “Dynamics of one-dimensional maps,” Mathematics and Its Applications, 407, Kluwer Academic Publishers, Dordrecht (1997).

  26. H. L. Smith, Monotone Dynamical Systems, American Mathematical Society, Providence, RI (1995).

  27. H. L. Smith and H. R. Thieme, “Dynamical systems and population persistence,” Grad. Stud. Math., vol. 189, American Mathematical Society, Providence, RI (2011).

  28. J. Szarski, Differential Inequalities, PWN, Warszawa (1965).

    Google Scholar 

  29. J. B. van den Berg and J. Jaquette, “A proof of Wright’s conjecture,” J. Different. Equat., 264, 7412–7462 (2018).

    Article  MathSciNet  Google Scholar 

  30. H.-O. Walther, “The impact on mathematics of the paper ‘Oscillation and chaos in physiological control systems”’, by Mackey and Glass in Science, 1977,” arXiv:2001.09010 (2020).

  31. G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Marcel Dekker, New York (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Trofimchuk.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, No. 12, pp. 1635–1651, December, 2023. Ukrainian DOI: https://doi.org/10.3842/umzh.v75i12.7678.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera, F., Trofimchuk, S. Dynamics of One-Dimensional Maps and Gurtin–Maccamy’s Population Model. Part I. Asymptotically Constant Solutions. Ukr Math J 75, 1850–1868 (2024). https://doi.org/10.1007/s11253-024-02296-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-024-02296-w

Navigation