Skip to main content
Log in

Variational Problems with Percolation: Dilute Spin Systems at Zero Temperature

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the asymptotic behavior of dilute spin lattice energies by exhibiting a continuous interfacial limit energy computed using the notion of Γ-convergence and techniques mixing Geometric Measure Theory and Percolation while scaling to zero the lattice spacing. The limit is not trivial above a percolation threshold. Since the lattice energies are not equi-coercive, a suitable notion of limit magnetization must be defined, which can be characterized by two phases separated by an interface. The macroscopic surface tension at this interface is characterized through a first-passage percolation formula, which highlights interesting connections between variational problems and percolation issues. A companion result on the asymptotic description on energies defined on paths in a dilute environment is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G.: Shape Optimization by the Homogenization Method. Springer, New York (2002)

    Book  MATH  Google Scholar 

  2. Alberti, G., Bellettini, G., Cassandro, M., Presutti, E.: Surface tension in Ising system with Kac potentials. J. Stat. Phys. 82, 743–796 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Alicandro, R., Braides, A., Cicalese, M.: Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Netw. Heterog. Media 1, 85–107 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., Braides, A.: Functionals defined on partitions of sets of finite perimeter, II: Semicontinuity, relaxation and homogenization. J. Math. Pures Appl. 69, 307–333 (1990)

    MathSciNet  MATH  Google Scholar 

  5. Bellettini, G., Cassandro, M., Presutti, E.: Constrained minima of non local free energy functionals. J. Stat. Phys. 84, 1337–1349 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Benois, O., Bodineau, T., Buttà, P., Presutti, E.: On the validity of van der Waals theory of surface tension. Markov Process. Relat. Fields 3, 175–198 (1997)

    MATH  Google Scholar 

  7. Benois, O., Bodineau, T., Presutti, E.: Large deviations in the van der Waals limit. Stoch. Process. Appl. 75, 89–104 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  9. Bodineau, T.: The Wulff construction in three and more dimensions. Commun. Math. Phys. 207, 197–229 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Bodineau, T., Ioffe, D., Velenik, Y.: Rigorous probabilistic analysis of equilibrium crystal shapes. J. Math. Phys. 41, 1033–1098 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Braides, A.: Approximation of Free-Discontinuity Problems. Lecture Notes in Mathematics, vol. 1694. Springer, Berlin (1998)

    MATH  Google Scholar 

  12. Braides, A.: Γ-Convergence for Beginners. Oxford University Press, Oxford (2002)

    Book  MATH  Google Scholar 

  13. Braides, A.: A handbook of Γ-convergence. In: Chipot, M., Quittner, P. (eds.) Handbook of Differential Equations. Stationary Partial Differential Equations, vol. 3. Elsevier, Amsterdam (2006)

    Google Scholar 

  14. Braides, A., Defranceschi, A.: Homogenization of Multiple Integrals. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  15. Braides, A., Piatnitski, A.: Overall properties of a discrete membrane with randomly distributed defects. Arch. Ration. Mech. Anal. 189, 301–323 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Braides, A., Piatnitski, A.: Homogenization of surface and length energies for spin systems. J. Funct. Anal. (to appear)

  17. Cerf, R.: Large deviations for three dimensional supercritical percolation. Astérisque 267, vi+177 pp. (2000)

  18. Cerf, R., Pisztora, A.: On the Wulff crystal in the Ising model. Ann. Probab. 28, 947–1017 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Cerf, R., Pisztora, A.: Phase coexistence in Ising, Potts and percolation models. Ann. Inst. Henri Poincaré Probab. Stat. 37, 643–724 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Cerf, R., Théret, M.: Law of large numbers for the maximal flow through a domain of ℝd in first passage percolation. Trans. Am. Math. Soc. 363, 3665–3702 (2011)

    Article  MATH  Google Scholar 

  21. Chechkin, G.A., Piatnitski, A.L., Shamaev, A.S.: Homogenization. Methods and Applications. Translations of Mathematical Monographs, vol. 234. Am. Math. Soc., Providence (2007)

    MATH  Google Scholar 

  22. Dal Maso, G.: An Introduction to Γ-Convergence. Birkhäuser, Boston (1993)

    Book  Google Scholar 

  23. Garet, O., Marchand, R.: Large deviations for the chemical distance in supercritical Bernoulli percolation. Ann. Probab. 35, 833–866 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grimmet, G.: Percolation. Springer, Berlin (1999)

    Google Scholar 

  25. Kesten, H.: Percolation Theory for Mathematicians. Progress in Probability and Statistics, vol. 2. Birkhäuser, Boston (1982)

    MATH  Google Scholar 

  26. Kesten, H.: First-passage percolation. From classical to modern probability. In: Progr. Probab., vol. 54, pp. 93–143. Birkhäuser, Basel (2003)

    Google Scholar 

  27. Milton, G.: The Theory of Composites. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  28. Morse, A.P.: Perfect blankets. Trans. Am. Math. Soc. 6, 418–442 (1947)

    Article  MathSciNet  Google Scholar 

  29. Presutti, E.: Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics. Springer, Berlin (2009)

    MATH  Google Scholar 

  30. Solci, M.: Double-porosity homogenization for perimeter functionals. Math. Methods Appl. Sci. 32, 1971–2002 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Wouts, M.: Surface tension in the dilute Ising model. The Wulff construction. Commun. Math. Phys. 289, 157–204 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge the valuable suggestions of the anonymous referee who pointed out Refs. [20] and [31], thanks to which we could improve our previous two-dimensional result.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Braides.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braides, A., Piatnitski, A. Variational Problems with Percolation: Dilute Spin Systems at Zero Temperature. J Stat Phys 149, 846–864 (2012). https://doi.org/10.1007/s10955-012-0628-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0628-1

Keywords

Navigation