Skip to main content
Log in

Disordered Quantum Wires: Microscopic Origins of the DMPK Theory and Ohm’s Law

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the electronic transport properties of the Anderson model on a strip, modeling a quasi one-dimensional disordered quantum wire. In the literature, the standard description of such wires is via random matrix theory. Our objective is to firmly relate this theory to a microscopic model. We correct and extend previous work (Bachmann and De Roeck in J. Stat. Phys. 139:541–564, 2010) on the same topic. In particular, we obtain through a physically motivated scaling limit an ensemble of random matrices that is close to, but not identical to the standard transfer matrix ensembles (sometimes called TOE, TUE), corresponding to the Dyson symmetry classes β=1,2. In the β=2 class, the resulting conductance is the same as the one from the ideal ensemble, i.e. from TUE. In the β=1 class, we find a deviation from TOE. It remains to be seen whether or not this deviation vanishes in a thick-wire limit, which is the appropriate regime for metals. For the ideal ensembles, we also prove Ohm’s law for all symmetry classes, making mathematically precise a moment expansion by Mello and Stone in Phys. Rev. B 44:3559–3576, 1991. This proof bypasses the explicit but intricate solution methods that underlie most previous results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The physically most natural way to discuss β=4 as well would be to consider electrons with spin, which we chose not to do for reasons of simplicity.

References

  1. Bachmann, S., De Roeck, W.: From the Anderson model on a strip to the DMPK equation and random matrix theory. J. Stat. Phys. 139, 541–564 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Beenakker, C.W.J.: Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731–808 (1997)

    Article  ADS  Google Scholar 

  3. Beenakker, C.W.J., Rejaei, B.: Nonlogarithmic repulsion of transmission eigenvalues in a disordered wire. Phys. Rev. Lett. 71, 3689–3692 (1993)

    Article  ADS  Google Scholar 

  4. Brouwer, P.W., Mudry, C., Furusaki, A.: Nonuniversality in quantum wires with off-diagonal disorder: a geometric point of view. Nucl. Phys. B 565(3), 653–663 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Büttiker, M., Imry, Y., Landauer, R., Pinhas, S.: Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207–6215 (1985)

    Article  ADS  Google Scholar 

  6. Butz, M.: Existence of a unique strong solution to the DMPK equation. arXiv:1205.3396 (2012)

  7. Caselle, M.: Distribution of transmission eigenvalues in disordered wires. Phys. Rev. Lett. 74, 2776–2779 (1995)

    Article  ADS  Google Scholar 

  8. Caselle, M.: A new classification scheme for random matrix theories. http://arxiv.org/pdf/cond-mat/9610017 (1996)

  9. Dorokhov, O.N.: Transmission coefficient and the localization length of an electron in N bound disordered chains. JETP Lett. 36(7), 318–321 (1982)

    ADS  Google Scholar 

  10. Dorokhov, O.N.: Solvable model of multichannel localization. Phys. Rev. B 37, 10526–10541 (1988)

    Article  ADS  Google Scholar 

  11. Erdös, L., Yau, H.T.: Universality of local spectral statistics of random matrices. Bull. Amer. Math. Soc. 49(3), 377–414 (2012)

    Article  Google Scholar 

  12. Ethier, S.N., Kurtz, T.G.: Invariance Principles and Diffusion Approximations, pp. 337–364. Wiley, New York (2008)

    Google Scholar 

  13. Hüffmann, A.: Disordered wires from a geometric viewpoint. J. Phys. A 23(24), 5733 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  15. Lee, P.A., Stone, A.D.: Universal conductance fluctuations in metals. Phys. Rev. Lett. 55, 1622–1625 (1985)

    Article  ADS  Google Scholar 

  16. Macedo, A.M.S., Chalker, J.: Exact results for the level density and two-point correlation function of the transmission-matrix eigenvalues in quasi-one-dimensional conductors. Phys. Rev. B 49(7), 4695–4702 (1994)

    Article  ADS  Google Scholar 

  17. Mello, P.A., Pereyra, P., Kumar, N.: Macroscopic approach to multichannel disordered conductors. Ann. Phys. 181(2), 290–317 (1988)

    Article  ADS  Google Scholar 

  18. Mello, P.A., Stone, A.D.: Maximum-entropy model for quantum-mechanical interference effects in metallic conductors. Phys. Rev. B 44, 3559–3576 (1991)

    Article  ADS  Google Scholar 

  19. Römer, R., Schulz-Baldes, H.: The random phase property and the Lyapunov spectrum for disordered multi-channel systems. J. Stat. Phys. 140, 122–153 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Sadel, C., Schulz-Baldes, H.: Random Lie group actions on compact manifolds: A perturbative analysis. Ann. Probab. 38(6), 2224–2257 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Valko, B., Virag, B.: Random Schrödinger operators on long boxes, noise explosion and the GOE. http://arxiv.org/abs/0912.0097v3 (2009)

  22. Wegner, F.J.: Disordered system with n orbitals per site: n=∞ limit. Phys. Rev. B 19, 783–792 (1979)

    Article  ADS  Google Scholar 

  23. Zirnbauer, M.: Super Fourier analysis and localization in disordered wires. Phys. Rev. Lett. 69, 1584–1587 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgements

Maximilian Butz benefited a lot from discussions with members of Antti Kupiainen’s group at Helsinki University, and is grateful for financial support by the Academy of Finland during his stay there. Sven Bachmann gratefully acknowledges the support of the National Science Foundation under Grant #DMS-0757581.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Bachmann.

Additional information

On leave from University of Heidelberg (W. De Roeck).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachmann, S., Butz, M. & De Roeck, W. Disordered Quantum Wires: Microscopic Origins of the DMPK Theory and Ohm’s Law. J Stat Phys 148, 164–189 (2012). https://doi.org/10.1007/s10955-012-0517-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0517-7

Keywords

Navigation