Skip to main content
Log in

The Random Phase Property and the Lyapunov Spectrum for Disordered Multi-channel Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A random phase property establishing in the weak coupling limit a link between quasi-one-dimensional random Schrödinger operators and full random matrix theory is advocated. Briefly summarized it states that the random transfer matrices placed into a normal system of coordinates act on the isotropic frames and lead to a Markov process with a unique invariant measure which is of geometric nature. On the elliptic part of the transfer matrices, this measure is invariant under the unitaries in the hermitian symplectic group of the universality class under study. While the random phase property can up to now only be proved in special models or in a restricted sense, we provide strong numerical evidence that it holds in the Anderson model of localization. A main outcome of the random phase property is a perturbative calculation of the Lyapunov exponents which shows that the Lyapunov spectrum is equidistant and that the localization lengths for large systems in the unitary, orthogonal and symplectic ensemble differ by a factor 2 each. In an Anderson-Ando model on a tubular geometry with magnetic field and spin-orbit coupling, the normal system of coordinates is calculated and this is used to derive explicit energy dependent formulas for the Lyapunov spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958)

    Article  ADS  Google Scholar 

  2. Anderson, P.W., Thouless, D.J., Abrahams, E., Fisher, D.S.: New method for a scaling theory of localization. Phys. Rev. B 22, 3519–3526 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  3. Ando, T.: Numerical study of symmetry effects on localization in two dimensions. Phys. Rev. B 40, 5325–5339 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  4. Beenakker, C.W.J.: Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731–808 (1997)

    Article  ADS  Google Scholar 

  5. Beenakker, C.W.J., Büttiker, M.: Suppression of shot noise in metallic diffusive conductors. Phys. Rev. Lett. 46, 1889–1892 (1992)

    ADS  Google Scholar 

  6. Bougerol, P., Lacroix, J.: Products of Random Matrices with Applications to Schrödinger Operators. Birkhäuser, Boston (1985)

    MATH  Google Scholar 

  7. Chalker, J.T., Bernhardt, M.: Scattering theory, transfer matrices, and Anderson localization. Phys. Rev. Lett. 70, 982–985 (1993)

    Article  ADS  Google Scholar 

  8. Dorokhov, O.N.: Electron localization in a multichannel conductor. Sov. Phys. JETP 58, 606–615 (1983)

    Google Scholar 

  9. Dorokhov, O.N.: On the coexistence of localized and extended electronic states in the metalic phase. Solid State Commun. 51, 381–384 (1984)

    Article  ADS  Google Scholar 

  10. Dorokhov, O.N.: Solvable model of multichannel localization. Phys. Rev. B 37, 10526–10541 (1988)

    Article  ADS  Google Scholar 

  11. Dyson, F.: The dynamics of a disordered linear chain. Phys. Rev. 92, 1331–1338 (1953)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Efetov, K.B., Larkin, A.I.: Kinetics of a quantum particle in long metallic wires. Sov. Phys. JETP 58, 444–451 (1983)

    Google Scholar 

  13. Froufe-Pérez, L.S., Yépez, M., Mello, P.A., Sáenz, J.: Statistical scattering of waves in disordered waveguides: From microscopic potentials to limiting macroscopic statistics. Phys. Rev. E 75, 031113–031141 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  14. Hiai, F., Petz, D.: The Semicircle Law, Free Random Variables and Entropy. AMS, Providence (2000)

    MATH  Google Scholar 

  15. Howard, J.E., MacKay, R.S.: Linear stability of symplectic maps. J. Math. Phys. 28, 1036–1051 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Kramer, B., Schreiber, M.: Transfer-matrix methods and finite-size scaling for disordered systems. In: Hoffmann, K.H., Schreiber, M. (eds.) Computational Physics, pp. 166–188. Springer, Berlin (1996)

    Google Scholar 

  17. Macêdo, A.M.S., Chalker, J.T.: Effects of spin-orbit interactions in disordered conductors: A random-matrix approach. Phys. Rev. B 46, 14985–14994 (1992)

    Article  ADS  Google Scholar 

  18. MacKinnon, A., Kramer, B.: One-parameter scaling of localization length and conductance in disordered systems. Phys. Rev. Lett. 47, 1546–1549 (1981)

    Article  ADS  Google Scholar 

  19. Mehta, M.L.: Random Matrices, 2nd edn. Academic Press, San Diego (1991)

    MATH  Google Scholar 

  20. Mello, P.A., Pereyra, P., Kumar, N.: Macroscopic approach to multichannel disordered conductors. Ann. Phys. 181, 290–317 (1988)

    Article  ADS  Google Scholar 

  21. Mello, P.A., Shapiro, B.: Existence of a limiting distribution for disordered electronic conductors. Phys. Rev. B 37, 5860–5863 (1988)

    Article  ADS  Google Scholar 

  22. Mello, P.A., Stone, A.D.: Maximum-entropy model for quantum-mechanical interference effects in metallic conductors. Phys. Rev. B 44, 3559–3576 (1991)

    Article  ADS  Google Scholar 

  23. Mello, P.A., Tomsovic, S.: Scattering approach to quantum electronic transport. Phys. Rev. B 46, 15963–15981 (1992)

    Article  ADS  Google Scholar 

  24. Pastur, L., Figotin, A.: Spectra of Random and Almost-Periodic Operators. Springer, Berlin (1992)

    MATH  Google Scholar 

  25. Pichard, J.-L., Sarma, G.: Finite-size scaling approach to Anderson localisation I. J. Phys. C 14, L127–132 (1981)

    Article  ADS  Google Scholar 

  26. Pichard, J.-L., Sarma, G.: Finite-size scaling approach to Anderson localisation II. J. Phys. C 14, L617–625 (1981)

    Article  ADS  Google Scholar 

  27. Römer, R.A., Schreiber, M.: Numerical investigations of scaling at the Anderson transition. In: Brandes, T., Kettemann, S. (eds.) The Anderson Transition and its Ramifications—Localisation, Quantum Interference, and Interactions. Lecture Notes in Physics, vol. 630, pp. 3–19. Springer, Berlin (2003)

    Google Scholar 

  28. Römer, R.A., Schulz-Baldes, H.: Weak disorder expansion for localization lengths of quasi-1D systems. Eur. Phys. Lett. 68, 247–250 (2004)

    Article  ADS  Google Scholar 

  29. Sadel, C., Schulz-Baldes, H.: Scaling diagram for the localization length at a band edge. Ann. Henri Poincaré 8, 1595–1621 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Sadel, C., Schulz-Baldes, H.: Random Dirac operators with time reversal symmetry. Commun. Math. Phys. 295, 209–242 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  31. Sadel, Ch., Schulz-Baldes, H.: Random Lie group actions on compact manifolds: a perturbative analysis. Ann. Probab. (2008, to appear)

  32. Schmidt, H.: Disordered one-dimensional crystals. Phys. Rev. 105, 425–441 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Schulz-Baldes, H.: Perturbation theory for an Anderson model on a strip. Geom. Funct. Anal. 14, 1089–1117 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  34. Schulz-Baldes, H.: Rotation numbers for Jacobi matrices with matrix entries. Math. Phys. Electron. J. 13 (2007). 40 pages

    Google Scholar 

  35. Thouless, D.J.: Maximum metallic resistance in thin wires. Phys. Rev. Lett. 39, 1167–1170 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Schulz-Baldes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Römer, R.A., Schulz-Baldes, H. The Random Phase Property and the Lyapunov Spectrum for Disordered Multi-channel Systems. J Stat Phys 140, 122–153 (2010). https://doi.org/10.1007/s10955-010-9986-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-9986-8

Keywords

Navigation