Skip to main content
Log in

A Note on a Model System with Sudden Directional Diffusion

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study qualitative properties of solutions to a monodimensional problem

$$u_t-(u_x + \operatorname{sgn} u_x)_x=0$$

with the Dirichlet boundary conditions. Such a system presents a key analytical challenge coming from the examination of models of anisotropic phenomena like crystal growth. Our analysis concentrates on the properties of facets—flat regions of solutions—typical for this type of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier/Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  2. Allard, W.K.: Total variation regularization for image denoising, I. Geometric theory. SIAM J. Math. Anal. 39(4), 1150–1190 (2007/08)

    Article  MathSciNet  Google Scholar 

  3. Andreu, F., Caselles, V., Mazón, J.M.: Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Progress in Mathematics, vol. 223. Birkhäuser, Basel (2004)

    Book  MATH  Google Scholar 

  4. Angenent, S., Gurtin, M.E.: Multiphase thermomechanics with interfacial structure. II. Evolution of an isothermal interface. Arch. Ration. Mech. Anal. 108(4), 323–391 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellettini, G., Caselles, V., Chambolle, A., Novaga, M.: Crystalline mean curvature flow of convex sets. Arch. Ration. Mech. Anal. 179(1), 109–152 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in ℝN. J. Differ. Equ. 184, 475–525 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cahn, J.W., Taylor, J.E.: Overview No. 98. I—Geometric models of crystal growth. Acta Metall. 40, 1443–1474 (1992)

    Article  Google Scholar 

  8. Giga, M.-H., Giga, Y.: Evolving graphs by singular weighted curvature. Arch. Ration. Mech. Anal. 141, 117–198 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fukui, T., Giga, Y.: Motion of a graph by nonsmooth weighted curvature. In: Lakshmikantham, V. (ed.) World Congress of Nonlinear Analysis ’92. Proceedings of the First World Congress, Tampa, FL, USA, August 19–26, 1992, pp. 47–56. de Gruyter, Berlin (1996)

    Chapter  Google Scholar 

  10. Giga, M.-H., Giga, Y., Kobayashi, R.: Very singular diffusion equation. Adv. Stud. Pure Math. 31, 93–125 (2001)

    MathSciNet  Google Scholar 

  11. Giga, M.-H., Giga, Y., Rybka, P.: A comparison principle for singular diffusion equations with spatially inhomogeneous driving force for graphs (preprint)

  12. Kobayashi, R., Giga, Y.: Equations with singular diffusivity. J. Stat. Phys. 95(5-6), 1187–1220 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Giga, Y., Rybka, P.: Quasi-static evolution of 3-D crystals grown from supersaturated vapor. Differ. Integral Equ. 15, 1–15 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Górka, P.: Quasi-static evolution of polyhedral crystals. Discrete Contin. Dyn. Syst., Ser. B 9, 309–320 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gurtin, M.: Thermomechanics of Evolving Phase Boundaries in the Plane. Clarendon Press, Oxford (1993)

    MATH  Google Scholar 

  16. Kielak, K., Mucha, P.B., Rybka, P.: Almost classical solutions to the total variation flow. http://arxiv.org/abs/1106.5369

  17. Mucha, P.B.: Regular solutions to a model monodimensional system with discontinuous elliptic operator. Interfaces Free Bound (to appear)

  18. Mucha, P.B., Rybka, P.: A new look at equilibria in Stefan-type problems in the plane. SIAM J. Math. Anal. 39(4), 1120–1134 (2007/08)

    Article  MathSciNet  Google Scholar 

  19. Mucha, P.B., Rybka, P.: A caricature of a singular curvature flow in the plane. Nonlinearity 21(10), 2281–2316 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Mucha, P.B., Rybka, P.: Well-posedness of a sudden directional diffusion equation (forthcoming)

  21. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  ADS  MATH  Google Scholar 

  22. Spohn, H.: Surface dynamics below the roughening transition. J. Phys. I (France) 3, 69–81 (1993)

    Article  Google Scholar 

  23. Taylor, J.: Motion of curves by crystalline curvature, including triple junctions and boundary points. In: Greene, R., Yau, S.T. (eds.) Differential Geometry: Partial Differential Equations on Manifolds. Proc. Symp. Pure Math., vol. 54, Part I, pp. 417–438. Am. Math. Soc., Providence (1993)

    Google Scholar 

Download references

Acknowledgements

This work has been partly supported by MNiSzW grant No. N N201 268935. Both authors want to thank the referees for their remarks which helped make the paper better.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Rybka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mucha, P.B., Rybka, P. A Note on a Model System with Sudden Directional Diffusion. J Stat Phys 146, 975–988 (2012). https://doi.org/10.1007/s10955-012-0446-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-012-0446-5

Keywords

Navigation