Skip to main content
Log in

Determinantal Process Starting from an Orthogonal Symmetry is a Pfaffian Process

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

When the number of particles N is finite, the noncolliding Brownian motion (BM) and the noncolliding squared Bessel process with index ν>−1 (BESQ(ν)) are determinantal processes for arbitrary fixed initial configurations. In the present paper we prove that, if initial configurations are distributed with orthogonal symmetry, they are Pfaffian processes in the sense that any multitime correlation functions are expressed by Pfaffians. The 2×2 skew-symmetric matrix-valued correlation kernels of the Pfaffians processes are explicitly obtained by the equivalence between the noncolliding BM and an appropriate dilatation of a time reversal of the temporally inhomogeneous version of noncolliding BM with finite duration in which all particles start from the origin, 0, and by the equivalence between the noncolliding BESQ(ν) and that of the noncolliding squared generalized meander starting from 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altland, A., Zirnbauer, M.R.: Random matrix theory of a chaotic Andreev quantum dot. Phys. Rev. Lett. 76, 3420–3424 (1996)

    Article  ADS  Google Scholar 

  2. Altland, A., Zirnbauer, M.R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structure. Phys. Rev. B 55, 1142–1161 (1997)

    Article  ADS  Google Scholar 

  3. Bleher, P.M., Kuijlaars, A.B.: Integral representations for multiple Hermite and multiple Laguerre polynomials. Ann. Inst. Fourier 55, 2001–2014 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borodin, A., Rains, E.M.: Eynard-Mehta theorem, Schur process, and their Pfaffian analogs. J. Stat. Phys. 121, 291–317 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Borodin, A., Ferrari, P.L., Prähfer, M., Sasamoto, T., Warren, J.: Maximum of Dyson Brownian motion and non-colliding systems with a boundary. Electron. Commun. Probab. 14, 486–494 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brézin, E., Hikami, S., Larkin, A.I.: Level statistics inside the vortex of a superconductor and symplectic random-matrix theory in an external source. Phys. Rev. B 60, 3589–3602 (1999)

    Article  ADS  Google Scholar 

  7. Delvaux, S., Kuijlaars, A.B., Zhang, L.: Critical behavior of non-intersecting Brownian motions at a tacnode. Commun. Pure Appl. Math. 64, 1305–1383 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Desrosiers, P., Forrester, P.J.: A note on biorthogonal ensembles. J. Approx. Theory 152, 167–187 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Eynard, B., Mehta, M.L.: Matrices coupled in a chain: I. Eigenvalue correlations. J. Phys. A 31, 4449–4456 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Forrester, P.J.: Log-gases and Random Matrices. London Mathematical Society Monographs. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  12. Forrester, P.J., Nagao, T., Honner, G.: Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges. Nucl. Phys. B 553 [PM], 601–643 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Ivanov, D.A.: Random-matrix ensembles in p-wave vortices (2001). arXiv:cond-mat/0103089

  14. Katori, M.: Characteristic polynomials of random matrices and noncolliding diffusion processes. arXiv:1102.4655 [math.PR]

  15. Katori, M., Tanemura, H.: Scaling limit of vicious walks and two-matrix model. Phys. Rev. E 66, 011105/1-12 (2002)

    Article  ADS  Google Scholar 

  16. Katori, M., Tanemura, H.: Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems. J. Math. Phys. 45, 3058–3085 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Katori, M., Tanemura, H.: Infinite systems of noncolliding generalized meanders and Riemann-Liouville differintegrals. Probab. Theory Relat. Fields 138, 113–156 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Katori, M., Tanemura, H.: Noncolliding Brownian motion and determinantal processes. J. Stat. Phys. 129, 1233–1277 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Katori, M., Tanemura, H.: Zeros of Airy function and relaxation process. J. Stat. Phys. 136, 1177–1204 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Katori, M., Tanemura, H.: Non-equilibrium dynamics of Dyson’s model with an infinite number of particles. Commun. Math. Phys. 293, 469–497 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Katori, M., Tanemura, H.: Noncolliding squared Bessel processes. J. Stat. Phys. 142, 592–615 (2011)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Katori, M., Tanemura, H.: Complex Brownian motion representation of the Dyson model (2010). arXiv:1008.2821 [math.PR]

  23. Katori, M., Tanemura, H.: Noncolliding processes, matrix-valued processes and determinantal processes. Sūgaku Expo. (in press). arXiv:1005.0533 [math.PR]

  24. Katori, M., Nagao, T., Tanemura, H.: Infinite systems of non-colliding Brownian particles. In: Stochastic Analysis on Large Scale Interacting Systems. Adv. Stud. Pure Math., vol. 39, pp. 283–306. Mathematical Society of Japan, Tokyo (2004)

    Google Scholar 

  25. Katori, M., Tanemura, H., Nagao, T., Komatsuda, N.: Vicious walk with a wall, noncolliding meanders, chiral and Bogoliubov-de Gennes random matrices. Phys. Rev. E 68, 021112/1–16 (2003)

    Article  ADS  Google Scholar 

  26. König, W., O’Connell, N.: Eigenvalues of the Laguerre process as non-colliding squared Bessel process. Electron. Commun. Probab. 6, 107–114 (2001)

    Article  Google Scholar 

  27. Kuijlaars, A.B., Martínez-Finkelshtein, A., Wielonsky, F.: Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weight. Commun. Math. Phys. 286, 217–275 (2009)

    Article  MATH  ADS  Google Scholar 

  28. Kuijlaars, A.B., Martínez-Finkelshtein, A., Wielonsky, F.: Non-intersecting squared Bessel paths: critical time and double scaling limit. arXiv:1011.1278 [math.CA]

  29. Levin, B.Ya.: Lectures on Entire Functions. Translations of Mathematical Monographs, vol. 150. Am. Math. Soc., Providence (1996)

    MATH  Google Scholar 

  30. Mahoux, G., Mehta, M.L.: A method of integration over matrix variables IV. J. Phys. I (France) 1, 1093–1108 (1991)

    Article  MathSciNet  Google Scholar 

  31. Mahoux, G., Mehta, M.L., Normand, J.M.: Matrices coupled in a chain: II. Spacing functions. J. Phys. A 31, 4457–4464 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Mehta, M.L.: Random Matrices, 3rd edn. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  33. Mehta, M.L., Pandey, A.: On some Gaussian ensemble of Hermitian matrices. J. Phys. A, Math. Gen. 16, 2655–2684 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Nagao, T.: Dynamical correlations for vicious random walk with a wall. Nucl. Phys. B 658 [FS], 373–396 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Nagao, T.: Pfaffian expressions for random matrix correlation functions. J. Stat. Phys. 129, 1137 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Nagao, T., Forrester, P.J.: Multilevel dynamical correlation function for Dyson’s Brownian motion model of random matrices. Phys. Lett. A 247, 42–46 (1998)

    Article  ADS  Google Scholar 

  37. Nagao, T., Forrester, P.J.: Quaternion determinant expressions for multilevel dynamical correlation functions of parametric random matrices. Nucl. Phys. B 563 [PM], 547–572 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. Nagao, T., Katori, M., Tanemura, H.: Dynamical correlations among vicious random walkers. Phys. Lett. A 307, 29–35 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. Noguchi, J.: Introduction to Complex Analysis. Translations of Mathematical Monographs, vol. 168. Am. Math. Soc., Providence (1998)

    MATH  Google Scholar 

  40. Olshanski, G.: Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes. J. Math. Sci. (N.Y.) 174, 41–57 (2011)

    Article  MathSciNet  Google Scholar 

  41. Pandey, A., Mehta, M.L.: Gaussian ensembles of random Hermitian intermediate between orthogonal and unitary ones. Commun. Math. Phys. 87, 449–468 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. Rambeau, J., Schehr, G.: Extremal statistics of curved growing interfaces in 1+1 dimensions. Europhys. Lett. 91, 60006/1–6 (2010)

    Article  Google Scholar 

  43. Rambeau, J., Schehr, G.: Distribution of the time at which N vicious walkers reach their maximal height. Phys. Rev. E 83, 061146/1–27 (2011)

    Article  ADS  Google Scholar 

  44. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, New York (1998)

    Google Scholar 

  45. Schehr, G., Majumdar, S.N., Comtet, A., Randon-Furling, J.: Exact distribution of the maximal height of p vicious walkers. Phys. Rev. Lett. 101, 150601/1–4 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  46. Sener, M.K., Verbaarschot, J.J.M.: Universality in chiral random matrix theory at β=1 and β=4. Phys. Rev. Lett. 81, 248–251 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. Tracy, C.A., Widom, H.: Differential equations for Dyson processes. Commun. Math. Phys. 252, 7–41 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  48. Tracy, C.A., Widom, H.: Nonintersecting Brownian excursions. Ann. Appl. Probab. 17, 953–979 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  49. Verbaarschot, J.: The spectrum of the Dirac operator near zero virtuality for N c =2 and chiral random matrix theory. Nucl. Phys. B 426 [FS], 559–574 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. Verbaarschot, J.J.M., Zahed, I.: Spectral density of the QCD Dirac operator near zero virtuality. Phys. Rev. Lett. 70, 3852–3855 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Katori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katori, M. Determinantal Process Starting from an Orthogonal Symmetry is a Pfaffian Process. J Stat Phys 146, 249–263 (2012). https://doi.org/10.1007/s10955-011-0372-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0372-y

Keywords

Navigation