Skip to main content
Log in

Gaussian ensembles of random hermitian matrices intermediate between orthogonal and unitary ones

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A Gaussian ensemble of Hermitian matrices depending on a parameter α is considered. When α=0, the ensemble is Gaussian Orthogonal, and when α=1, it is Gaussian Unitary. An analytic expression for then-level correlation and cluster functions is given for anyn and 0≦α≦1. This ensemble is of relevance in the study of time reversal symmetry breaking of nuclear interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Porter, C. E. (ed.): Statistical theories of spectra: Fluctuations. New York: Academic Press 1965

    Google Scholar 

  2. Wigner, E. P.: SIAM Rev.9, 1 (1967)

    Google Scholar 

  3. Mehta, M. L.: Random matrices and the statistical theory of energy levels. New York: Academic Press 1967

    Google Scholar 

  4. Brody, T. A., Flores, J., French, J. B., Mello, P. A., Pandey, A., Wong, S. S. M.: Random-matrix physics: Spectrum and strength fluctuations. Rev. Mod. Phys.53, 385 (1981); this review covers recent developments and contains up to date references in the field.

    Google Scholar 

  5. Haq, R. U., Pandey, A., Bohigas, O.: Fluctuation properties of nuclear energy levels: Do theory and experiment agree? Phys. Rev. Lett.,48, 1086 (1982)

    Google Scholar 

  6. Dyson, F. J.: Statistical theory of the energy levels of complex systems. I. J. Math. Phys.3, 140 (1962), reprinted in Porter [1]; Mehta, M. L., Ref. [3], Chap. 2

    Google Scholar 

  7. Favro, L. D., McDonald, J. F.: Possibility of detecting a small time-reversal-noninvariant term in the Hamiltonian of a complex system by measurements of energy-level spacings. Phys. Rev. Lett.19, 1254 (1967); Rosenzweig, N., Monahan, J. E., Mehta, M. L.: Perturbation of the statistical properties of nuclear states and transitions by interactions that are odd under time reversal. Nucl. Phys.A109, 437 (1968); McDonald, J. F.: On the width distribution for a complex system whose Hamiltonian contains a small interaction that is odd under time reversal. J. Math. Phys.10, 1191 (1969); Mehta, M. L.: Matrices hermitiques aléatoires à partie imaginaire petite. Nuovo CimB65, 107 (1970); Camarda, H. S.: Upper limit on a time reversal noninvariant part of Wigner's random matrix model. Phys. Rev.C13, 2524 (1976); McDonald, J. F.: Some mathematically simple ensembles of random matrices which represent Hamiltonians with a small time reversal noninvariant part. Nuovo CimentoB57, 95 (1980)

    Google Scholar 

  8. French, J. B., Kota, V.K.B., Pandey, A.: Upper bound for time reversal non-invariance from energy level fluctuations. (to be published)

  9. Pandey, A.: Statistical Properties of many particle spectra IV. New ensembles by Stieltjes transform methods. Ann. Phys. (N. Y.)134, 110 (1981)

    Google Scholar 

  10. See for example Mehta, M. L.: Ref. [3], Chap. 3

    Google Scholar 

  11. Mehta, M. L., Rosenzweig, N.: Distribution laws for the roots of a random antisymmetric hermitian matrix. Nucl. Phys. A109, 449 (1968)

    Google Scholar 

  12. Itzykson, C., Zuber, J. B.: The planar approximation. II. J. Math. Phys.21, 411 (1980); Mehta, M. L.: A method of integration over matrix variables. Commun. Math. Phys.79, 327 (1981)

    Google Scholar 

  13. See for example Mehta, M. L.: Ref. [3], Sect. 5.2, appendix A.7

    Google Scholar 

  14. Dyson, F. J.: Correlations between eigenvalues of a random matrix. Commun. Math. Phys.19, 235 (1970); Mehta, M. L.: Elements of matrix theory, Delhi: Hindustan Publishing Corporation, 1977, Chap. 8

    Google Scholar 

  15. Mehta, M. L.: A note on correlations between eigenvalues of a random matrix. Commun. Math. Phys.20, 245 (1971)

    Google Scholar 

  16. Dyson, F. J.: Statistical theory of the energy levels of complex systems. III. J. Math. Phys.3, 166 (1962), reprinted in Porter [1]; Mehta, M. L.: Ref. [3], Chap. 5

    Google Scholar 

  17. Pandey, A.: Statistical properties of many-particle spectra III. Ergodic behavior in random-matrix ensembles. Ann. Phys. (N. Y.)119, 170 (1979), Appendix I

    Google Scholar 

  18. Szegö, G.: Orthogonal Polynomials, New York: Am. Math. Soc., 1939, Sect. 8.22, page 195

    Google Scholar 

  19. Bateman, H.: Tables of integral transforms. Erdelyi, A., (ed.), Vol. 1 pp. 18 and 96. New York: McGraw Hill, 1954

    Google Scholar 

  20. Mehta, M. L.: Ref. [3], Appendix A. 10

    Google Scholar 

  21. Dyson, F. J., Mehta, M. L.: Statistical theory of energy levels of complex systems. IV, J. Math.4, 701 (1963), reprinted in Porter [1]

    Google Scholar 

  22. Brody, T. A., et al.: Ref. [4],, Sects, V. C., V. D.

    Google Scholar 

  23. Abramowitz, M., Stegun, I. A., (eds.): Handbook of Mathematical Functions, Washington: National Bureau of Standards, U. S. Department of Commerce, 1964, Chap. 5, Eqs. (5.1.11, 5.1.32, 5.2.1, 5.2.2)

    Google Scholar 

  24. Pandey, A.: Ref. [17], Appendix II

    Google Scholar 

  25. Abramowitz, M., Stegun, I. A.: Ref. [23], Eq. (22.9.17)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Araki

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, A., Mehta, M.L. Gaussian ensembles of random hermitian matrices intermediate between orthogonal and unitary ones. Commun.Math. Phys. 87, 449–468 (1983). https://doi.org/10.1007/BF01208259

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01208259

Keywords

Navigation