Skip to main content
Log in

On the Boltzmann Equation for 2D Bose-Einstein Particles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper considers the spatially homogeneous Boltzmann equation for 2D Bose-Einstein particles. Suppose the collision kernel satisfies some assumptions that include the hard disk model and other possible physical models. We prove the existence of global in time conservative measure solutions of the equation for isotropic initial data, and that for any initial datum which is not totally singular and has positive energy, the solution always converges strongly to the Bose-Einstein distribution as time goes to infinity. This implies that for the present 2D model there is no Bose-Einstein condensation in the sense of long-time limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Benedetto, D., Pulvirenti, M., Castella, F., Esposito, R.: On the weak-coupling limit for bosons and fermions. Math. Models Methods Appl. Sci. 15(12), 1811–1843 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bouchut, F., Desvillettes, L.: A proof of the smoothing properties of the positive part of Boltzmann’s kernel. Rev. Mat. Iberoam. 14(1), 47–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  4. Escobedo, M., Mischler, S., Valle, M.A.: Homogeneous Boltzmann equation in quantum relativistic kinetic theory. Electron. J. Differ. Equ., Monograph 4 (2003)

  5. Escobedo, M., Mischler, S., Velázquez, J.J.L.: On the fundamental solution of a linearized Uehling-Uhlenbeck equation. Arch. Ration. Mech. Anal. 186(2), 309–349 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Escobedo, M., Mischler, S., Velázquez, J.J.L.: Singular solutions for the Uehling-Uhlenbeck equation. Proc. R. Soc. Edinb. A 138, 67–107 (2008)

    Article  MATH  Google Scholar 

  7. Erdös, L., Salmhofer, M., Yau, H.-T.: On the quantum Boltzmann equation. J. Stat. Phys. 116(1–4), 367–380 (2004)

    Article  ADS  MATH  Google Scholar 

  8. Lions, P.L.: Compactness in Boltzmann’s equations via Fourier integral operators and applications, I. J. Math. Kyoto Univ. 34, 391–427 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Lu, X.G.: A modified Boltzmann equation for Bose-Einstein particles: isotropic solutions and long-time behavior. J. Stat. Phys. 98, 1335–1394 (2000)

    Article  MATH  ADS  Google Scholar 

  10. Lu, X.G.: On isotropic distributional solutions to the Boltzmann equation for Bose-Einstein particles. J. Stat. Phys. 116, 1597–1649 (2004)

    Article  ADS  MATH  Google Scholar 

  11. Lu, X.G.: The Boltzmann equation for Bose-Einstein particles: velocity concentration and convergence to equilibrium. J. Stat. Phys. 119, 1027–1067 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Markowich, P.A., Pareschi, L.: Fast conservative and entropic numerical methods for the boson Boltzmann equation. Numer. Math. 99, 509–532 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nordheim, L.W.: On the kinetic methods in the new statistics and its applications in the electron theory of conductivity. Proc. R. Soc. Lond. Ser. A 119, 689–698 (1928)

    Article  ADS  MATH  Google Scholar 

  14. Nouri, A.: Bose-Einstein condensates at very low temperatures: a mathematical result in the isotropic case. Bull. Inst. Math. Acad. Sin. (N.S.) 2(2), 649–666 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Posazhennikova, A.: Colloquium: weakly interacting, dilute Bose gases in 2D. Rev. Mod. Phys. 78, 1111–1134 (2006)

    Article  ADS  Google Scholar 

  16. Semikov, D.V., Tkachev, I.I.: Kinetics of Bose condensation. Phys. Rev. Lett. 74, 3093–3097 (1995)

    Article  ADS  Google Scholar 

  17. Semikov, D.V., Tkachev, I.I.: Condensation of Bose in the kinetic regime. Phys. Rev. D 55, 489–502 (1997)

    Article  ADS  Google Scholar 

  18. Spohn, H.: Kinetics of the Bose-Einstein condensation. Physica D 239, 627–634 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Uehling, E.A., Uhlenbeck, G.E.: Transport phenomena in Einstein-Bose and Fermi-Dirac gases, I. Phys. Rev. 43, 552–561 (1933)

    Article  ADS  MATH  Google Scholar 

  20. Wennberg, B.: The geometry of binary collisions and generalized Radon transforms. Arch. Ration. Mech. Anal. 139(3), 291–302 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuguang Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., Zhang, X. On the Boltzmann Equation for 2D Bose-Einstein Particles. J Stat Phys 143, 990–1019 (2011). https://doi.org/10.1007/s10955-011-0221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0221-z

Keywords

Navigation