Skip to main content
Log in

Assessment of the Comparative Interactions of Cuminaldehyde with Bovine Serum Albumin and Human Serum Albumin Through Spectroscopic and Molecular Docking Investigation

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Cuminaldehyde, an oxidized aldehyde monoterpene, present in green cumin seeds (Cuminum cyminum Linn, Family—Apiaceae), is traditionally used for the treatment of abdominal colic, dyspepsia, diarrhea, and jaundice. Also, many studies have reported the antioxidant, antibacterial and antifungal effects of cuminaldehyde. Serum albumins are the major soluble and small molecule-binding proteins, present in abundance in the circulatory system of a wide variety of organisms. Studies on the interaction of bioactive molecules with bovine serum albumin (BSA) and human serum albumin (HSA) have attracted enormous interest due to its direct consequence on drug delivery, pharmacokinetics, pharmacodynamics, therapeutic efficacy and drug designing. Our present study is carried out to understand the mechanism of interaction of pharmaceutically important component of spices, cuminaldehyde with BSA and HSA. Fluorescence spectroscopic measurements confirmed that cuminaldehyde interacted with BSA and HSA and quenched its fluorescence intensity via static quenching mechanism. UV–Visible absorption studies and CD-spectroscopy showed the change in secondary conformation of BSA and HSA upon interaction with cuminaldehyde. CD-spectroscopy revealed that HSA is unfolded at lower concentration of cuminaldehyde compared to BSA. The location of binding site for cuminaldehyde in BSA and HSA was investigated by site probe displacement experiments and the results indicated that cuminaldehyde preferred to bind site-I, located in subdomain IIA of both BSA and HSA. Thermodynamic studies revealed that vander Waal’s interaction and hydrogen bonding play a major role in cuminaldehyde-BSA system while hydrophobic interactions play vital role in cuminaldehyde-HSA system. The molecular dockings of cuminaldehyde with BSA/HSA further confirmed the formation of the stable BSA/HSA–cuminaldehyde complex and cuminaldehyde binds at site-I of HSA. On the other hand, docking study showed that cuminaldehyde interacts with some residues close to site-I of BSA. Both experimental and theoretical results showed that the ΔG0 values are comparable for both the proteins, which indicate almost equal stability of cuminaldehyde-BSA and cuminaldehyde–HSA complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ebada, M.E.: Cuminaldehyde: A potential drug candidate. J. Pharmacol. Clin. Res. 2(2), 1–4 (2017)

    Article  Google Scholar 

  2. Morshedi, D., Aliakbari, F., Tayaranian-Marvian, A., Fassihi, A., Pan-Montojo, F., Pérez-Sánchez, H.: Cuminaldehyde as the major component of cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. J. Food Sci. 80(10), 2336–2345 (2015)

    Article  Google Scholar 

  3. Al-Snafi, A.E.: Medicinal plants possessed anti-Parkinsonian effects with emphasis on their mechanisms of action. GSC Biol. Pharmaceut. Sci. 17(1), 232–237 (2021)

    Article  CAS  Google Scholar 

  4. Monteiro-Neto, V., de Souza, C.D., Gonzaga, L.F., da Silveira, B.C., Sousa, N.C., Pontes, J.P., Fernandes, E.S.: Cuminaldehyde potentiates the antimicrobial actions of ciprofloxacin against Staphylococcus Aureus and Escherichia coli. PLoS ONE 15(5), e0232987 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, H., Zhang, M., Addo, K.A., Yu, Y., Xiao, X.: Action mode of cuminaldehyde against Staphylococcus aureus and its application in sauced beef. LWT. 155, 112924 (2022)

    Article  CAS  Google Scholar 

  6. Basu, A., Kumar, G.S.: Thermodynamics of the interaction of the food additive tartrazine with serum albumins: A microcalorimetric investigation. Food Chem. 175, 137–142 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. Basu, A., Kumar, G.S.: Study on the interaction of the toxic food additive carmoisine with serum albumins: A microcalorimetric investigation. J. Hazard. Mater. 273, 200–206 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. Yu, J., Liu, J.Y., Xiong, W.M., Zhang, X.Y., Zheng, Y.: Binding interaction of sodium benzoate food additive with bovine serum albumin: Multi-spectroscopy and molecular docking studies. BMC Chem. 13(1), 1–8 (2019)

    Article  Google Scholar 

  9. Zhang, G., Ma, Y., Wang, L., Zhang, Y., Zhou, J.: Multispectroscopic studies on the interaction of Maltol, a food additive, with bovine serum albumin. Food Chem. 133(2), 264–270 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. Javaheri-Ghezeldizaj, F., Mahmoudpour, M., Yekta, R., Dolatabadi, J.E.N.: Albumin binding study to sodium lactate food additive using spectroscopic and molecular docking approaches. J. Mol. Liq. 310, 113259 (2020)

    Article  CAS  Google Scholar 

  11. Al-Shabib, N.A., Khan, J.M., Ali, M.S., Al-Lohedan, H.A., Khan, M.S., Al-Senaidy, A.M., Shamsi, M.B.: Exploring the mode of binding between food additive “butylated hydroxytoluene (BHT)” and human serum albumin: Spectroscopic as well as molecular docking study. J. Mol. Liq. 230, 557–564 (2017)

    Article  CAS  Google Scholar 

  12. Mohammadzadeh-Aghdash, H., Dolatabadi, J.E.N., Dehghan, P., Panahi-Azar, V., Barzegar, A.: Multi-spectroscopic and molecular modeling studies of bovine serum albumin interaction with sodium acetate food additive. Food Chem. 228, 265–269 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. Taheri, R., Hamzkanlu, N., Rezvani, Y., Niroumand, S., Samandar, F., Amiri-Tehranizadeh, Z., Chamani, J.: Exploring the HSA/DNA/lung cancer cells binding behavior of p-synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: multi spectroscopic, molecular dynamic and cellular approaches. J. Mol. Liq. 368, 120826 (2022)

    Article  CAS  Google Scholar 

  14. Sharifi-Rad, A., Mehrzad, J., Darroudi, M., Saberi, M.R., Chamani, J.: Oil-in-water nanoemulsions comprising berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. J. Biomol. Struct. Dyn. 39(3), 1029–1043 (2021)

    Article  CAS  PubMed  Google Scholar 

  15. Chamani, J., Vahedian-Movahed, H., Saberi, M.R.: Lomefloxacin promotes the interaction between human serum albumin and transferrin: A mechanistic insight into the emergence of antibiotic’s side effects. J. Pharm. Biomed. Anal. 55(1), 114–124 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. Goncharenko, N.A., Dmytrenko, O.P., Kulish, M.P., Pavlenko, O.L., Lesiuk, A.I., Busko, T.O., Denis, L.V.: Mechanisms of the interaction of bovine serum albumin with anticancer drug gemcitabine. Mol. Cryst. Liq. Cryst. 701(1), 59–71 (2020)

    Article  ADS  CAS  Google Scholar 

  17. Chilom, C.G., David, M., Florescu, M.: Monitoring biomolecular interaction between folic acid and bovine serum albumin. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 230, 118074 (2020)

    Article  CAS  Google Scholar 

  18. Soltanabadi, O., Atri, M.S., Bagheri, M.: Spectroscopic analysis, docking and molecular dynamics simulation of the interaction of cinnamaldehyde with human sserum albumin. J. Incl. Phenom. Macrocycl. Chem. 91, 189–197 (2018)

    Article  CAS  Google Scholar 

  19. Sun, Q., Yang, H., Tang, P., Liu, J., Wang, W., Li, H.: Interactions of cinnamaldehyde and its metabolite cinnamic acid with human serum albumin and interference of other food additives. Food Chem. 243, 74–81 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. Soares, S., Mateus, N., De Freitas, V.: Interaction of different polyphenols with Bovine Serum Albumin (BSA) and Human Salivary α-amylase (HSA) by fluorescence quenching. J. Agric. Food Chem. 55(16), 6726–6735 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. Ali, M.S., Rehman, M.T., Al-Lohedan, H., Alajmi, M.F.: Spectroscopic and molecular docking investigation on the interaction of cumin components with plasma protein: Assessment of the comparative interactions of aldehyde and alcohol with human serum albumin. Int. J. Mol. Sci. 23(8), 4078 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ali, M.S., Rehman, M.T., Al-Lohedan, H.A., Alajmi, M.F.: Study of the binding of cuminaldehyde with bovine serum albumin by spectroscopic and molecular modeling methods. J. Spectrosc. (2023). https://doi.org/10.1155/2023/4191046

    Article  Google Scholar 

  23. Yao, D., Yu, J., Pan, Y., Huang, F., Bian, H., Yu, Q., Liang, H.: Spectroscopic studies on the binding of kaempferol-3, 7-α-L-rhamnopyranoside to bovine serum albumin. Chin. J. Chem. 30(2), 438–444 (2012)

    Article  CAS  Google Scholar 

  24. Zhang, Y.Z., Zhou, B., Liu, Y.X., Zhou, C.X., Ding, X.L., Liu, Y.: Fluorescence Study on the Interaction of Bovine Serum Albumin with P-Aminoazobenzene. J. Fluoresc. 18, 109–118 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Feng, Z., Gilliland, G.L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J.D., Zardecki, C.: The protein data bank. Acta Crystallogr. D Biol. Crystallogr. 58(6), 899–907 (2002)

    Article  ADS  PubMed  Google Scholar 

  26. O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R.: Open Babel: an open chemical toolbox. J. Cheminf. 3(1), 1–14 (2011)

    Google Scholar 

  27. Liu, Y., Yang, X., Gan, J., Chen, S., Xiao, Z.X., Cao, Y.: CB-dock 2: improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 50, 159–164 (2022)

    Article  Google Scholar 

  28. Laskowski, R.A., Swindells, M.B.: LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51(10), 2778–2786 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. Wang, Z., Pan, H., Sun, H., Kang, Y., Liu, H., Cao, D., Hou, T.: FASTDRH: A webserver to predict and analyze protein-ligand complexes based on molecular docking and MM/PB (Gb)SA computation. Brief. Bioinform. 23(5), 1–10 (2022)

    Article  Google Scholar 

  30. Papadopoulou, A., Green, R.J., Frazier, R.A.: Interaction of flavonoids with bovine serum albumin: A fluorescence quenching study. J. Agric. Food Chem. 53(1), 158–163 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. Bi, S., Sun, Y., Qiao, C., Zhang, H., Liu, C.: Binding of several anti-tumor drugs to bovine serum albumin: Fluorescence study. J. Lumin. 129(5), 541–547 (2009)

    Article  CAS  Google Scholar 

  32. Bakar, K.A., Feroz, S.R.: A critical view on the analysis of fluorescence quenching data for determining ligand–protein binding affinity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. Mol. Biomol. Spectrosc. 223, 117337 (2019)

    Article  CAS  Google Scholar 

  33. Feldman, I., Young, D., McGuire, R.: Static and dynamic quenching of protein fluorescence: I—Bovine serum albumin. Biopolymers: Original Res. Biomol. 14(2), 335–351 (1975)

    Article  CAS  Google Scholar 

  34. Jayabharathi, J., Thanikachalam, V., Srinivasan, N., Perumal, M.V.: Luminescent study on the binding interaction of bioactive imidazole with bovine serum albumin—A static quenching mechanism. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 84(1), 233–237 (2011)

    Article  ADS  CAS  Google Scholar 

  35. Kandagal, P.B., Ashoka, S., Seetharamappa, J., Shaikh, S.M.T., Jadegoud, Y., Ijare, O.B.: Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. J. Pharm. Biomed. Anal. 41(2), 393–399 (2006)

    Article  CAS  PubMed  Google Scholar 

  36. Bulusu, G., Desiraju, G.R.: Strong and weak hydrogen bonds in protein-ligand recognition. J. Indian Inst. Sci. 100, 31–41 (2020)

    Article  Google Scholar 

  37. Hubbard, R.E., Haider, M.K.: Hydrogen bonds in proteins: role and strength. eLS. (2010). https://doi.org/10.1002/9780470015902.a0003011.pub2

    Article  Google Scholar 

  38. Williams, M.A., Ladbury, J.E.: Hydrogen Bonds in Protein-Ligand Complexes. In: Protein-Ligand Interactions: from Molecular Recognition to Drug Design, pp. 137–161. Wiley, NY (2003)

    Chapter  Google Scholar 

  39. Leckband, D., Israelachvili, J.: Intermolecular forces in biology. Q. Rev. Biophys. 34(2), 105–267 (2001)

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, R.J., Kou, S.B., Hu, L., Li, L., Shi, J.H., Jiang, S.L.: Exploring binding interaction of baricitinib with bovine serum albumin (BSA): Multi-spectroscopic approaches combined with theoretical calculation. J. Mol. Liq. 354, 118831 (2022)

    Article  CAS  Google Scholar 

  41. Chen, W.Y., Huang, H.M., Lin, C.C., Lin, F.Y., Chan, Y.C.: Effect of temperature on hydrophobic interaction between proteins and hydrophobic adsorbents: Studies by isothermal titration calorimetry and the van’t Hoff equation. Langmuir 19(22), 9395–9403 (2003)

    Article  CAS  Google Scholar 

  42. Lou, Y.Y., Zhou, K.L., Pan, D.Q., Shen, J.L., Shi, J.H.: Spectroscopic and molecular docking approaches for investigating conformation and binding characteristics of clonazepam with bovine serum albumin (BSA). J. Photochem. Photobiol. B. 167, 158–167 (2017)

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Y.Z., Zhou, B., Zhang, X.P., Huang, P., Li, C.H., Liu, Y.: Interaction of malachite green with bovine serum albumin: Determination of the binding mechanism and binding site by spectroscopic methods. J. Hazard. Mater. 163(2–3), 1345–1352 (2009)

    Article  CAS  PubMed  Google Scholar 

  44. Dufour, C., Dangles, O.: Flavonoid-serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. Biochim. Biophys. Acta (BBA) 1721(1–3), 164–173 (2005)

    Article  CAS  PubMed  Google Scholar 

  45. Sudlow, G.D.J.B., Birkett, D.J., Wade, D.N.: The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol. 11(6), 824–832 (1975)

    CAS  PubMed  Google Scholar 

  46. Sudlow, G.D.J.B., Birkett, D.J., Wade, D.N.: Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol. 12(6), 1052–1061 (1976)

    CAS  PubMed  Google Scholar 

  47. Chuang, V.T.G., Otagiri, M.: Stereoselective binding of human serum albumin. Chirality 18(3), 159–166 (2006)

    Article  CAS  PubMed  Google Scholar 

  48. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF chimeraa visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to Indian Institute of Technology (IIT), Guwahati and Pandu College, Assam, for providing instrument facilities.

Funding

This work was supported by a Grant from Department of Biotechnology (DBT), India (NECBH/2019-20/160 & Date: 29-04-2019)

Author information

Authors and Affiliations

Authors

Contributions

RB designed and carried out all the experiments, analyzed the results and prepared the manuscripts. VSKM performed the molecular docking. GH performed CD Spectroscopy.

Corresponding author

Correspondence to Rituparna Borah.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borah, R., Mattaparthi, V.S.K. & Hazarika, G. Assessment of the Comparative Interactions of Cuminaldehyde with Bovine Serum Albumin and Human Serum Albumin Through Spectroscopic and Molecular Docking Investigation. J Solution Chem (2024). https://doi.org/10.1007/s10953-024-01367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10953-024-01367-7

Keywords

Navigation