Skip to main content

Advertisement

Log in

Separation of Long-Lived 108mAg from 152Eu and 60Co Using Polyethylene Glycol Based Aqueous Two Phase Systems

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

An environmentally benign aqueous two phase system has been developed for the separation of 108mAg from 152Eu and 60Co using polyethylene glycol/salt system. Twelve salts (nine inorganic, three organic) and PEG 4000 were chosen to form the ATPS out of which, the best separation was observed for 3 mL 2 mol·dm−3 K3PO4: 3 mL PEG 4000 followed by 3 mL 2 mol·dm−3 Na2SO4: 3 mL PEG 4000. In both cases, silver was preferentially extracted in the PEG rich phase. The separation factors achieved were SAg/Co = 2.11 × 103 and SAg/Eu = 2.79 × 102 in the case of 2 mol·dm−3 K3PO4: PEG 4000 combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang, X., Liu, Y.: Nanomaterials for radioactive wastewater decontamination. Environ. Sci.: Nano 7(4), 1008–1040 (2020)

    CAS  Google Scholar 

  2. Rahman, R.A., Ibrahium, H.A., Hung, Y.T.: Liquid radioactive wastes treatment: a review. Water 3(2), 551–565 (2011)

    Article  Google Scholar 

  3. Naskar, N., Lahiri, S.: Theranostic terbium radioisotopes: challenges in production for clinical application. Front. Med. 8, 675014 (2021)

    Article  Google Scholar 

  4. Parab, H., Joshi, S., Shenoy, N., Lali, A., Sarma, U.S., Sudersanan, M.: Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith. Process Biochem. 41(3), 609–615 (2006)

    Article  CAS  Google Scholar 

  5. Metwally, E., Elkholy, S.S., Salem, H.A.M., Elsabee, M.Z.: Sorption behavior of 60Co and 152+154Eu radionuclides onto chitosan derivatives. Carbohydr. Polym. 76(4), 622–631 (2009)

    Article  CAS  Google Scholar 

  6. Wang, X., Yang, S., Shi, W., Li, J., Hayat, T., Wang, X.: Different interaction mechanisms of Eu(III) and 243Am(III) with carbon nanotubes studied by batch, spectroscopy technique and theoretical calculation. Environ. Sci. Technol. 49(19), 11721–11728 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. Ferreux, L., Lépy, M.C., Bé, M.M., Isnard, H., Lourenco, V.: Photon emission intensities in the decay of 108mAg and 110mAg. Appl. Radiat. Isot. 87, 101–106 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. Pan, X.H., Zu, J.H., Xue, Y., Liu, S.Y., Diao, J.J., Zhao, L.: Efficient removal of 110mAg nanoparticles (110mAg Nps) in nuclear wastewater by amines-containing anionic adsorbent PP-g-GMA@EDA. Sep. Purif. Technol. 297, 121450 (2022)

    Article  CAS  Google Scholar 

  9. Weller, A., Zok, D., Steinhauser, G.: Uptake and elemental distribution of radiosilver 108mAg and radiocesium 137Cs in shiitake mushrooms (Lentinula edodes). J. Radioanal. Nucl. Chem. 322, 1761–1769 (2019)

    Article  CAS  Google Scholar 

  10. Sjoeblom, K.L., Ojala, J.: Initial experience with aquatic environmental monitoring programmes around Finnish nuclear power plants. In: Impacts of Radionuclide Releases into the Marine Environment. https://inis.iaea.org/search/search.aspx?orig_q=RN:12641310 (1981). Accessed 18 Mar 2023

  11. Baudin, J.P., Garnier-Laplace, J., Lambrechts, A.: Uptake from water, depuration and tissue distribution of 110mAg in a freshwater fish, Cyprinus carpio L. Water Air Soil Pollut. 72, 129–141 (1994)

    Article  CAS  Google Scholar 

  12. Shang, Z., Leung, J.K.: A study of 110mAg in aquatic and terrestrial ecosystems. Radiat. Environ. Biophys. 42(1), 33–40 (2003)

    Article  CAS  PubMed  Google Scholar 

  13. Szabó, G., Guczi, J., Valyon, J., Bulman, R.A.: Investigations of the sorption characteristics of radiosilver on some natural and artificial soil particles. Sci. Total Environ. 172(1), 65–78 (1995)

    Article  Google Scholar 

  14. Nakanishi, H., Mori, A., Takeda, K., Tanaka, H., Kobayashi, N., Tanoi, K., et al.: Discovery of radioactive silver (110 mAg) in spiders and other fauna in the terrestrial environment after the meltdown of Fukushima Dai-ichi nuclear power plant. Proc. Jpn. Acad. Ser. B 91(4), 160–174 (2015)

    Article  CAS  Google Scholar 

  15. Maksoud, M.A., Sami, N.M., Hassan, H.S., Bekhit, M., Ashour, A.H.: Novel adsorbent based on carbon-modified zirconia/spinel ferrite nanostructures: evaluation for the removal of cobalt and europium radionuclides from aqueous solutions. J. Colloid Interface Sci. 607, 111–124 (2022)

    Article  PubMed  Google Scholar 

  16. Mishra, B.B., Devi, N.: Solvent extraction and separation of europium(III) using a phosphonium ionic liquid and an organophosphorus extractant—a comparative study. J. Mol. Liq. 271, 389–396 (2018)

    Article  CAS  Google Scholar 

  17. Metwally, S.S., Hassan, H.S., Samy, N.M.: Impact of environmental conditions on the sorption behavior of 60Co and 152+154Eu radionuclides onto polyaniline/zirconium aluminate composite. J. Mol. Liq. 287, 110941 (2019)

    Article  CAS  Google Scholar 

  18. Hassan, H.S., Attia, L., Dakroury, G.A.: Exploration of the parameters affecting the radioactive europium removal from aqueous solutions by activated carbon-epoxy composite. Appl. Radiat. Isot. 164, 109278 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. Sofronov, D., Rucki, M., Varchenko, V., Bryleva, E., Mateychenko, P., Lebedynskiy, A.: Removal of europium, cobalt and strontium from water solutions using MnO(OH)-modified diatomite. J. Environ. Chem. Eng. 10(1), 106944 (2022)

    Article  CAS  Google Scholar 

  20. Ayoub, R.R.: Adsorption behavior and kinetics of exchange of Co2+ and Eu3+ ions on polymer composite ion exchanger. Sep. Sci. Technol. 51(2), 229–236 (2016)

    Article  CAS  Google Scholar 

  21. Hamed, M.M., Holiel, M., Ahmed, I.M.: Sorption behavior of cesium, cobalt and europium radionuclides onto hydroxyl magnesium silicate. Radiochim. Acta 104(12), 873–890 (2016)

    Article  CAS  Google Scholar 

  22. Abdel-Galil, E.A., Khalil, M., El-Aryan, Y.F.: Kinetic studies of using polyaniline-titanium tungstophosphate in removal of cesium, cobalt, and europium from waste solutions. Radiochemistry 57, 87–91 (2015)

    Article  CAS  Google Scholar 

  23. Hassan, H.S., Kenawy, S.H., El-Bassyouni, G.T., Hamzawy, E.M., Hassan, R.S.: Sorption behavior of cesium and europium radionuclides onto nano-sized calcium silicate. Part. Sci. Technol. 38(1), 105–112 (2020)

    Article  CAS  Google Scholar 

  24. Hamed, M.M., Ali, M.M.S., Holiel, M.: Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: equilibrium, kinetic and thermodynamic studies. J. Environ. Radioact. 164, 113–124 (2016)

    Article  CAS  PubMed  Google Scholar 

  25. El-Sweify, F.H., Abdel Fattah, A.A., El-Sheikh, R., Aly, S.M., Ghamry, M.A.: Adsorption and separation of 152+154Eu(III) and 60Co(II) using cerium(IV) tungstate. Radiochemistry 60, 274–280 (2018)

    Article  CAS  Google Scholar 

  26. Maity, S., Datta, A., Lahiri, S., Ganguly, J.: Selective separation of 152Eu from a mixture of 152Eu and 137Cs using a chitosan based hydrogel. RSC Adv. 5(109), 89338–89345 (2015)

    Article  CAS  Google Scholar 

  27. Roy, K., Paul, R., Banerjee, B., Lahiri, S.: Extraction of long-lived radionuclides 152,154Eu and 134Cs using environmentally benign aqueous biphasic system. Radiochim. Acta 97(11), 637–641 (2009)

    Article  CAS  Google Scholar 

  28. Sarkar, K., Sen, K., Lahiri, S.: Separation of long-lived 152Eu radioisotopes from a binary mixture of 152Eu and 134Cs by calcium alginate: a green technique. J. Radioanal. Nucl. Chem. 311(3), 2001–2006 (2017)

    Article  CAS  Google Scholar 

  29. Roy, K., Sinha, P., Lahiri, S.: Immobilization of long-lived radionuclide 152,154Eu by selective bioaccumulation in Saccharomyces cerevisiae from a synthetic mixture of 152,154Eu, 137Cs and 60Co. Biochem. Eng. J. 40, 363–367 (2008)

    Article  CAS  Google Scholar 

  30. Lahiri, S., Roy, K., Bhattacharya, S., Maji, S., Basu, S.: Separation of 134Cs and 152Eu using inorganic ion exchangers, zirconium vanadate and ceric vanadate. Appl. Radiat. Isot. 63, 293–297 (2005)

    Article  CAS  PubMed  Google Scholar 

  31. Nezhadali, A., Es’ haghi, Z., Bahar, S., Banaei, A., Shiran, J.A.: Selective separation of silver(I) ion through a bulk liquid membrane containing 1,1′-(1,3-phenylene)bis(3-allylthiourea) as carrier. J. Braz. Chem. Soc. 27, 99–108 (2016)

    CAS  Google Scholar 

  32. Olutoye, M.A., Alhamdu, J.A.: Electrochemical separation of metal silver from industrial wastewater. Adv. Chem. Eng. Sci. 4(04), 396 (2014)

    Article  Google Scholar 

  33. Absalan, G., Akhond, M., Ghanizadeh, A.Z., Abedi, Z.A., Tamami, B.: Benzil derivative of polyacrylohydrazide as a new sorbent for separation, preconcentration and measurement of silver(I) ion. Sep. Purif. Technol. 56(2), 231–236 (2007)

    Article  CAS  Google Scholar 

  34. Rajahalme, J., Perämäki, S., Väisänen, A.: Separation of palladium and silver from E-waste leachate: effect of nitric acid concentration on adsorption to Thiol scavenger. Chem. Eng. J. Adv. 10, 100280 (2022)

    Article  CAS  Google Scholar 

  35. Gülfen, M., Aydιn, A.O.: Separation and recovery of silver(I) ions from base metal ions by thiourea- or urea-formaldehyde chelating resin. Sep. Sci. Technol. 44(8), 1869–1883 (2009)

    Article  Google Scholar 

  36. Weller, A., Zok, D., Reinhard, S., Woche, S.K., Guggenberger, G., Steinhauser, G.: Separation of ultratraces of radiosilver from radiocesium for environmental nuclear forensics. Anal. Chem. 92(7), 5249–5257 (2020)

    Article  CAS  PubMed  Google Scholar 

  37. Kinly III, D.: Chernobyl’s legacy: health, environmental and socio-economic impacts and recommendations to the Governments of Belarus, the Russian Federation and Ukraine. The Chernobyl Forum 2003–2005. Second revised version (2006)

  38. Patzay, G., Tilky, P., Schunk, J., Pinter, T., Feil, F., Hamaguchi, K., Weiser, L.: Radioactive wastewater treatment using a mixture of TANNIX sorbent and VARION mixed bed ion exchange resin. Int. J. Nucl. Energy Sci. Technol. 2(4), 328–341 (2006)

    Article  CAS  Google Scholar 

  39. Salabat, A., Far, M.R., Moghadam, S.T.: Partitioning of amino acids in surfactant based aqueous two-phase systems containing the nonionic surfactant (Triton X-100) and salts. J. Solution Chem. 40, 61–66 (2011)

    Article  CAS  Google Scholar 

  40. Walter, H. (ed.): Partitioning in Aqueous Two-Phase System: Theory, Methods, Uses, and Applications to Biotechnology. Elsevier, Amsterdam (2012)

    Google Scholar 

  41. Shibukawa, M., Nakayama, N., Hayashi, T., Shibuya, D., Endo, Y., Kawamura, S.: Extraction behaviour of metal ions in aqueous polyethylene glycol–sodium sulphate two-phase systems in the presence of iodide and thiocyanate ions. Anal. Chim. Acta 427(2), 293–300 (2001)

    Article  CAS  Google Scholar 

  42. Ghosh, K., Lahiri, S., Sarkar, K., Naskar, N., Choudhury, D.: Ionic liquid-salt based aqueous biphasic system for rapid separation of no-carrier-added 203Pb from proton irradiated natTl2CO3 target. J. Radioanal. Nucl. Chem. 310, 1311–1316 (2016)

    Article  CAS  Google Scholar 

  43. Mitra, S., Naskar, N.: Separation of 133Ba and 137Cs from mixtures of 133Ba and 137Cs by environmentally benign PEG-based aqueous biphasic system. J. Solution Chem. 51(10), 1209–1218 (2022)

    Article  CAS  Google Scholar 

  44. Lahiri, S., Roy, K.: A green approach for sequential extraction of heavy metals from Li irradiated Au target. J. Radioanal. Nucl. Chem. 281(3), 531–534 (2009)

    Article  CAS  Google Scholar 

  45. Datta, A., Maiti, M., Lahiri, S.: Separation of 97Ru from niobium target using PEG based aqueous biphasic systems. J. Radioanal. Nucl. Chem. 302(2), 931–937 (2014)

    Article  CAS  Google Scholar 

  46. Maiti, M., Lahiri, S.: Measurement of yield of residues produced in 12C+ natY reaction and subsequent separation of 97Ru from Y target using cation exchange resin. Radiochim. Acta 103(1), 7–13 (2015)

    Article  CAS  Google Scholar 

  47. Dutta, B., Lahiri, S., Tomar, B.S.: Application of PEG based aqueous biphasic systems in extraction and separation of no-carrier-added 183Re from bulk tantalum. Radiochim. Acta 101(1), 19–26 (2013)

    Article  CAS  Google Scholar 

  48. Walter, H., Brooks, D.E., Fishcer, D.: Partitioning in aqueous two phase systems. In: Theory, Methods, Uses and Applications to Biotechnology. Academic Press, Orlando (1985)

  49. Rogers, R.D., Griffin, S.T., Philip Horwitz, E., Diamond, H.: Aqueous biphasic extraction chromatography (ABEC™): uptake of pertechnetate from simulated Hanford tank wastes. Solvent Extr. Ion Exch. 15(4), 547–562 (1997)

    Article  CAS  Google Scholar 

  50. Greenwood, N.N., Earnshaw, A.: Chemistry of the Elements, 2nd edn. Butterworth-Heinemann, Oxford (1997)

    Google Scholar 

  51. Ho, T.L., Ho, H.C., Hamilton, L.D.: Biochemical significance of the hard and soft acids and bases principle. Chem. Biol. Interact. 23(1), 65–84 (1978)

    Article  CAS  PubMed  Google Scholar 

  52. Smith, D.W.: Ionic hydration enthalpies. J. Chem. Educ. 54(9), 540 (1977)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SM: experimental design, methodology, analysis, draft writing. NN: conceptualization, methodology, analysis, draft reviewing. SL: conceptualization, analysis, draft reviewing.

Corresponding author

Correspondence to Nabanita Naskar.

Ethics declarations

Competing Interests

The authors declare no conflict or competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, S., Naskar, N. & Lahiri, S. Separation of Long-Lived 108mAg from 152Eu and 60Co Using Polyethylene Glycol Based Aqueous Two Phase Systems. J Solution Chem 52, 1289–1300 (2023). https://doi.org/10.1007/s10953-023-01318-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01318-8

Keywords

Navigation