Skip to main content
Log in

Separation of long-lived 152Eu radioisotopes from a binary mixture of 152Eu and 134Cs by calcium alginate: a green technique

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Calcium alginate (CA) hydrogel beads were prepared and used for the separation of 152Eu from trace and macro amounts of cesium. Best separation was achieved from 10−2 M HNO3, upon shaking 30 CA beads with the solution containing 152Eu and Cs for 20 min and then allowing a settle for further 10 min. Back extraction of europium without any contamination of Cs was successfully obtained after treating the 152Eu adsorbed CA beads with 0.1 M HNO3 and 1 M HNO3 solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Binjgham D, Dobrota M (1994) Distribution and escretion of lanthanides: comparison between europium salts and complexes. Biometals 7:142

    Google Scholar 

  2. Roberts SM, James RC, Williams PL (2015) Principles of toxicology: environmental and industrial applications. John Wiley and Sons, Inc., Hoboken

    Google Scholar 

  3. Metwally SS, Ayoub RR, Aly HF (2014) Utilization of low-cost sorbent for removal and separation of 134Cs, 60Co and 152+154Eu radionuclides from aqueous solution. J Radioanal Nucl Chem 302:441

    Article  CAS  Google Scholar 

  4. Roy K, Paul R, Banerjee B, Lahiri S (2009) Extraction of long-lived radionuclides 152,154Eu and 134Cs using environmentally benign aqueous biphasic system. Radiochim Acta 97:637

    Article  CAS  Google Scholar 

  5. Delacroix D, Guerre JP, Leblanc P, Hickman C (2002) Radionuclide and radiation protection data handbook, 2nd edn. Nuclear Technology Publishing, Ashford

    Google Scholar 

  6. Lahiri S, Roy K, Bhattacharya S, Maji S, Basu S (2005) Separation of 134Cs and 152Eu using inorganic ion exchangers, zirconium vanadate and ceric vanadate. Appl Radiat Isotopes 63:293

    Article  CAS  Google Scholar 

  7. Lahiri S, Mukhopadhyay K, Nayak D (1999) Separation of heavy ion induced carrier free europium isotopes from bulk quantity of cesium. J Radioanal Nucl Chem 242:127

    Article  CAS  Google Scholar 

  8. Nayak D, Lahiri S, Ramaswami A, Manohor SB, Das NR (1999) Production and separation of carrier-free 146,147Eu from a 12C6+ irradiated La2O3 matrix. Appl Radiat Isotopes 51:261

    Article  CAS  Google Scholar 

  9. Lahiri S, Nayak D, Das NR (2000) Production and separation of carrier-free 145,146Eu from a CsNO3 target using a 16O beam. Appl Radiat Isotopes 52:1393

    Article  CAS  Google Scholar 

  10. Maity S, Datta A, Lahiri S, Ganguly J (2015) Selective separation of 152Eu from a mixture of 152Eu and 137Cs using a chitosan based hydrogel. RSC Adv 5:89338

    Article  CAS  Google Scholar 

  11. Maity S, Datta A, Lahiri S, Ganguly J (2016) A dynamic chitosan-based self-healing hydrogel with tunable morphology and its application as an isolating agent. RSC Adv 6:81060

    Article  CAS  Google Scholar 

  12. Mirshafiey A, Khodadadi A, Rehm BH, Khorramizadeh MR, Eslami MB, Razavi A, Saadat F (2005) Sodium alginate as a novel therapeutic option in experimental colitis. J Immunol 61:316

    CAS  Google Scholar 

  13. Nestle N, Kimmich R (1996) Heavy metal uptake of alginate gels studied by NMR microscopy. Coll Surf A Physicochem Eng Asp 115:141

    Article  CAS  Google Scholar 

  14. Veglio F, Esposito A, Reverberi AP (2002) Copper adsorption on calcium alginate beads: equilibrium pH-related models. Hydrometallurgy 65:43

    Article  CAS  Google Scholar 

  15. Grant GT, Morris ER, Rees DA, Smitch PJC, Thom D (1973) Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett 32:195

    Article  CAS  Google Scholar 

  16. Bruchet M, Melman A (2015) Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange. Carbohydr Polym 131:57

    Article  CAS  Google Scholar 

  17. Griffin DR, Kasko AM (2012) Photodegradablemacromers and hydrogels for live cell encapsulation and release. J Am Chem Soc 134:13103

    Article  CAS  Google Scholar 

  18. Jin Z, Guven G, Bocharova V, Halamek J, Tokarev I, Minko S, Melman A, Mandler D, Katz E (2011) Electrochemically controlled drug-mimicking protein release from iron-alginate thin-films associated with an electrode. ACS Appl Mater Interfaces 4:466

    Article  Google Scholar 

  19. Nayak D, Lahiri S (2006) Biosorption of toxic, heavy, no-carrier added radionuclides by calcium alginate beads. J Radioanal Nucl Chem 267:59

    Article  CAS  Google Scholar 

  20. Mondal A, Lahiri S (2011) Separation of 134Cs and 133Ba radionuclides by calcium alginate beads. J Radioanal Nucl Chem 290:115

    Article  Google Scholar 

  21. Banerjee A, Nayak D, Lahiri S (2007) Speciation-dependent studies on removal of arsenic by iron-doped calcium alginate beads. Appl Radiat Isotopes 65:769

    Article  CAS  Google Scholar 

  22. Nayak D, Banerjee A, Lahiri S (2007) Separation of no-carrier-added 66,67Ga produced in heavy ion-induced cobalt target using alginate biopolymers. Appl Rad Isotopes 65:891

    Article  CAS  Google Scholar 

  23. Nayak D, Lahiri S, Mukhopadhyay A, Pal R (2003) Application of tracer packet technique to the study of the bio-sorption of heavy and toxic metal radionuclides by algae. J Radioanal Nucl Chem 256:535

    Article  CAS  Google Scholar 

  24. Nayak D, Banerjee A, Roy S, Lahiri S (2007) Speciation dependent studies on chromium absorption using calcium alginate and iron doped calcium alginate biopolymer. J Radioanal Nucl Chem 274:219

    Article  CAS  Google Scholar 

  25. Gok C, Aytas S (2009) Biosorption of uranium(VI) from aqueous solution using calcium alginate beads. J Hazard Mater 168:369

    Article  CAS  Google Scholar 

  26. Jang LK, Nguyen D, Geesey GG (1999) Selectivity of alginate gel for Cu over Zn when acidic conditions prevail. Water Res 33:2817

    Article  CAS  Google Scholar 

  27. Konichi Y, Asai S, Midoh Y, Oku M (1993) Recovery of zinc, cadmium, and lanthanum by biopolymer gel particles of alginic acid. Sep Sci Technol 28:1691

    Article  Google Scholar 

  28. Mimura H, Ohta H, Akiba K, Onodera Y (2001) Uptake behavior of americium on alginic acid and alginate polymer gels. J Radionanal Nucl Chem 247:33

    Article  CAS  Google Scholar 

  29. Fuks L, Oszczak A, Gniazdowska E, Sternik D (2015) Calcium alginate and chitosan as potential sorbents for strontiumradionuclide. J Radionanal Nucl Chem 304:15

    Article  CAS  Google Scholar 

  30. Fadl FIAE (2014) Radiation grafting of ionically crosslinked alginate/chitosan beads with acrylic acid for lead sorption. J Radionanal Nucl Chem 301:529

    Article  Google Scholar 

  31. Yu S-L, Dai Y, Cao X-H, Zhang Z-B, Liu Y-H, Ma H-J, Xiao S-J, Lai Z-J, Chen H-J, Zheng Z-Y, Le Z-G (2016) Adsorption of uranium(VI) from aqueous solution using a novelmagnetic hydrothermal cross-linking chitosan. J Radionanal Nucl Chem 310:651

    Article  CAS  Google Scholar 

  32. Bampaiti A, Yusan S, Aytas S, Pavlidou E, Noli F (2016) Investigation of uranium biosorption from aqueous solutions by Dictyopterispolypodioides brown algae. J Radionanal Nucl Chem 307:1335

    Article  CAS  Google Scholar 

  33. Keshtkar AR, Mohammadi M, Moosavian MA (2015) Equilibrium biosorption studies of wastewater U(VI), Cu(II)and Ni(II) by the brown alga Cystoseiraindica in single, binaryand ternary metal systems. J Radionanal Nucl Chem 303:363

    Article  CAS  Google Scholar 

  34. Sarkar K, Ansari Z, Sen K (2016) Detoxification of Hg(II) from aqueous and enzyme media: pristine vs. tailored calcium alginate hydrogels. Int J Biol Macromol 91:165

    Article  CAS  Google Scholar 

  35. Cao Y, Shen X, Chen Y, Guo J, Chen Q, Jiang X (2005) pH-induced self-assembly and capsules of sodium alginate. Biomacromolecules 6:2189

    Article  CAS  Google Scholar 

  36. PatricioIbáňz J, Umetsu Y (2002) Potential of protonated alginate beads for heavy metals uptake. Hydrometallurgy 64:89

    Article  Google Scholar 

  37. Yin Y, Ji X, Dong H, Ying Y, Zheng H (2008) Study of the swelling dynamics with overshooting effect of hydrogels based on sodium alginate-g-acrylic acid. Carbohydr Polym 7:682

    Article  Google Scholar 

  38. Greenwood NN, Earnshaw A (1989) Chemistry of the elements. In: Maxwell Macmillan international editions. Pergamon Press, Oxford

  39. Shen Y, Xu S, He D (2015) A novel europium chelate coated nanosphere for time-resolved fluorescence immunoassay. PLoS ONE. doi:10.1371/journal.pone.0129689

    Google Scholar 

  40. Juntunen E, Myyryläinen T, Salminen T, Soukka T, Pettersson K (2012) Performance of fluorescent europium(III) nanoparticles and colloidal gold reporters in lateral flow bioaffinity assay. Anal Biochem 428:31

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (Kangkana Sarkar) gratefully acknowledges the University Grants Commission (UGC) for providing necessary fellowship. This work is a part of SINP-DAE 12 Five years plan project Trace and Ultratrace Analysis and Isotope Production (TULIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Lahiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, K., Sen, K. & Lahiri, S. Separation of long-lived 152Eu radioisotopes from a binary mixture of 152Eu and 134Cs by calcium alginate: a green technique. J Radioanal Nucl Chem 311, 2001–2006 (2017). https://doi.org/10.1007/s10967-017-5176-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5176-3

Keywords

Navigation