Skip to main content
Log in

Uptake and elemental distribution of radiosilver 108mAg and radiocesium 137Cs in shiitake mushrooms (Lentinula edodes)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The bioconcentration factors for radiosilver (108mAg) and radiocesium (137Cs) for shiitake mushrooms from an artificially contaminated sawdust substrate were found to be 0.11 and 3.8, respectively. The main fraction of radiosilver was found in the stalk rather than the cap, whereas radiocesium accumulated mostly in the cap of the shiitake mushroom. The location of radiocesium inside the cap was analyzed by autoradiography, and the location of stable silver by LA-ICP-MS imaging. Furthermore, a method for semi-quantification of stable silver and cesium for organic solid samples was developed as an addition to the mostly qualitative autoradiography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. ICRP (1993) Age-dependent doses to members of the public from intake of radionuclides—part 2 ingestion dose coefficients: ICRP Publication 67. ICRP 23:3–4

    Google Scholar 

  2. Keum D-K, Jeong H, Jun I et al (2019) Effect of agricultural countermeasures on ingestion dose following a nuclear accident. J Radiat Prot Res 44(1):8–14. https://doi.org/10.14407/jrpr.2019.44.1.8

    Article  Google Scholar 

  3. Hamada N, Ogino H (2012) Food safety regulations: what we learned from the Fukushima nuclear accident. J Environ Radioact 111:83–99. https://doi.org/10.1016/j.jenvrad.2011.08.008

    Article  CAS  PubMed  Google Scholar 

  4. Merz S, Shozugawa K, Steinhauser G (2015) Analysis of Japanese radionuclide monitoring data of food before and after the Fukushima nuclear accident. Environ Sci Technol 49(5):2875–2885. https://doi.org/10.1021/es5057648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yamanaka K (1997) I. Production of cultivated edible mushrooms. Food Rev Int 13(3):327–333. https://doi.org/10.1080/87559129709541113

    Article  Google Scholar 

  6. Falandysz J, Kunito T, Kubota R et al (2008) Some mineral constituents of parasol mushroom (Macrolepiota procera). J Environ Sci Heal B 43(2):187–192. https://doi.org/10.1080/03601230701795247

    Article  CAS  Google Scholar 

  7. Falandysz J, Szymczyk K, Ichihashi H et al (2001) ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Addit Contam 18(6):503–513. https://doi.org/10.1080/02652030119625

    Article  CAS  PubMed  Google Scholar 

  8. Szymańska K, Strumińska-Parulska D, Falandysz J (2019) Isotopes of 210Po and 210Pb in Hazel bolete (Leccinum pseudoscabrum)—bioconcentration, distribution and related dose assessment. Environ Sci Pollut Res 26(18):18904–18912. https://doi.org/10.1007/s11356-019-05376-8

    Article  CAS  Google Scholar 

  9. Chatterjee S, Sarma MK, Deb U et al (2017) Mushrooms: from nutrition to mycoremediation. Environ Sci Pollut Res 24(24):19480–19493. https://doi.org/10.1007/s11356-017-9826-3

    Article  CAS  Google Scholar 

  10. Burger A, Lichtscheidl I (2018) Stable and radioactive cesium: a review about distribution in the environment, uptake and translocation in plants, plant reactions and plants’ potential for bioremediation. Sci Tot Environ 618:1459–1485. https://doi.org/10.1016/j.scitotenv.2017.09.298

    Article  CAS  Google Scholar 

  11. Grodzinskaya AA, Berreck M, Haselwandter K, Wasser SP (2003) Radiocesium contamination of wild-growing medicinal mushroooms in Ukraine. Int J Med Mushrooms 5:61–86

    Article  CAS  Google Scholar 

  12. Prand-Stritzko B, Steinhauser G (2018) Characteristics of radiocesium contaminations in mushrooms after the Fukushima nuclear accident: evaluation of the food monitoring data from March 2011 to March 2016. Environ Sci Pollut Res 25(3):2409–2416. https://doi.org/10.1007/s11356-017-0538-5

    Article  CAS  Google Scholar 

  13. Kuwahara C, Fukumoto A, Ohsone A et al (2005) Accumulation of radiocesium in wild mushrooms collected from a Japanese forest and cesium uptake by microorganisms isolated from the mushroom-growing soils. Sci Tot Environ 345(1–3):165–173. https://doi.org/10.1016/j.scitotenv.2004.10.022

    Article  CAS  Google Scholar 

  14. Orita M, Nakashima K, Taira Y et al (2017) Radiocesium concentrations in wild mushrooms after the accident at the Fukushima Daiichi nuclear power station: follow-up study in Kawauchi village. Sci Rep 7(1):6744. https://doi.org/10.1038/s41598-017-05963-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Battiston GA, Degetto S, Gerbasi R et al (1989) Radioactivity in mushrooms in Northeast Italy following the chernobyl accident. J Environ Radioact 9:53–60

    Article  CAS  Google Scholar 

  16. Kammerer L, Hiersche L, Wirth E (1994) Uptake of radiocaesium by different species of mushrooms. J Environ Radioact 23:135–150

    Article  CAS  Google Scholar 

  17. Borio R, Chiocchini S, Cicioni R et al (1991) Uptake of radiocesium by mushrooms. Sci Tot Environ 106:183–190

    Article  CAS  Google Scholar 

  18. Mietelski JW, Jasinska M, Kubica B, Kozak K et al (1994) Radioactive contamination of Polish mushrooms. Sci Total Environ 157:217–226

    Article  CAS  Google Scholar 

  19. Falandysz J, Saniewski M, Zhang J et al (2018) Artificial 137Cs and natural 40K in mushrooms from the subalpine region of the Minya Konka summit and Yunnan Province in China. Environ Sci Pollut Res 25(1):615–627. https://doi.org/10.1007/s11356-017-0454-8

    Article  CAS  Google Scholar 

  20. Orita M, Kimura Y, Taira Y et al (2018) Activities concentration of radiocesium in wild mushroom collected in Ukraine 30 years after the Chernobyl power plant accident. PeerJ 6:e4222. https://doi.org/10.7717/peerj.4222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guillén J, Baeza A (2014) Radioactivity in mushrooms: a health hazard? Food Chem 154:14–25. https://doi.org/10.1016/j.foodchem.2013.12.083

    Article  CAS  PubMed  Google Scholar 

  22. Nakashima K, Orita M, Fukuda N et al (2015) Radiocesium concentrations in wild mushrooms collected in Kawauchi Village after the accident at the Fukushima Daiichi nuclear power plant. PeerJ 3:e1427. https://doi.org/10.7717/peerj.1427

    Article  PubMed  PubMed Central  Google Scholar 

  23. Vaszari E, Tóth V, Tarján S (1992) Determination of radioactivities of some species of higher fungi. J Radioanal Nucl Chem 165(6):345–350. https://doi.org/10.1007/BF02164427

    Article  CAS  Google Scholar 

  24. Weller A, Hori M, Shozugawa K et al (2018) Rapid ultra-trace determination of Fukushima-derived radionuclides in food. Food Control 85:376–384. https://doi.org/10.1016/j.foodcont.2017.10.025

    Article  CAS  Google Scholar 

  25. Lepage H, Evrard O, Onda Y et al (2014) Environmental mobility of 110mAg: lessons learnt from Fukushima accident (Japan) and potential use for tracking the dispersion of contamination within coastal catchments. J Environ Radioact 130:44–55. https://doi.org/10.1016/j.jenvrad.2013.12.011

    Article  CAS  PubMed  Google Scholar 

  26. Stefanović V, Trifković J, Djurdjić S et al (2016) Study of silver, selenium and arsenic concentration in wild edible mushroom Macrolepiota procera, health benefit and risk. Environ Sci Pollut Res 23(21):22084–22098. https://doi.org/10.1007/s11356-016-7450-2

    Article  CAS  Google Scholar 

  27. Falandysz J, Bona H, Danisiewicz D (1994) Silver uptake by Agaricus bisporus from an artificially enriched substrate. Z Lebensm Unters Forsch 199:225–228

    Article  CAS  Google Scholar 

  28. Borovicka J, Kotrba P, Gryndler M et al (2010) Bioaccumulation of silver in ectomycorrhizal and saprobic macrofungi from pristine and polluted areas. Sci Tot Environ 408(13):2733–2744. https://doi.org/10.1016/j.scitotenv.2010.02.031

    Article  CAS  Google Scholar 

  29. Borovicka J, Randa Z, Jelínek E et al (2007) Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycol Res 111(Pt 11):1339–1344. https://doi.org/10.1016/j.mycres.2007.08.015

    Article  CAS  PubMed  Google Scholar 

  30. Beresford NA (1989) Field observations of 110mAg, originating from the chernobyl accident, in wes cumbrian vegetation and soil samples. J Radiol Prot 9(4):281–283

    Article  CAS  Google Scholar 

  31. Handl J, Kallweit E, Henning M et al (2000) On the long-term behaviour of 110mAg in the soil-plant system and its transfer from feed to pig. J Environ Radioact 48:159–170

    Article  CAS  Google Scholar 

  32. Newton D, Holmes A (1966) A case of accidental inhalation of Zinc-65 and Silver-110m. Radiat Res 29:403–412

    Article  CAS  Google Scholar 

  33. Rungby J, Danscher G (1983) Neuronal accumulation of silver in brains of progeny from argyric rats. Acta Neuropathol 61:258–262

    Article  CAS  Google Scholar 

  34. Royse DJ, Schisler LC, Diehle DA (1985) Shiitake mushrooms consumption, production and cultivation. Interdiscip Sci Rev 10(4):329–335. https://doi.org/10.1179/isr.1985.10.4.329

    Article  Google Scholar 

  35. Chang ST, Miles PG (2004) Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact, 2nd edn. CRC, Boca Raton

    Book  Google Scholar 

  36. Worrall JJ, Yang CS (1992) Shiitake and oyster mushroom production on apple pomace and sawdust. HortScience 27(10):1131–1133. https://doi.org/10.21273/HORTSCI.27.10.1131

    Article  Google Scholar 

  37. Sánchez JE, Royse DJ (2001) Adapting substrate formulas used for shiitake for production of brown Agaricus bisporus. Bioresour Technol 77(1):65–69. https://doi.org/10.1016/S0960-8524(00)00130-9

    Article  PubMed  Google Scholar 

  38. Bell RA, Kramer JR (1999) Structural chemistry and geochemistry of silver-sulfur compounds: critical review. Environ Toxicol Chem 18(1):9–22. https://doi.org/10.1002/etc.5620180103

    Article  CAS  Google Scholar 

  39. Derikx PJL, den Camp HJMO, van der Drift C et al (1990) Odorous Sulfur compounds emitted during production of compost used as a substrate in mushroom cultivation. Appl Environ Microbiol 56(1):176–180

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Westberg HM, Byström M, Leckner B (2003) Distribution of potassium, chlorine, and sulfur between solid and vapor phases during combustion of wood chips and coal. Energy Fuels 17(1):18–28. https://doi.org/10.1021/ef020060l

    Article  CAS  Google Scholar 

  41. Wang J-J, Wang C-J, Lai S-Y et al (1998) Radioactivity concentrations of 137Cs and 40K in basidiomycetes collected in Taiwan. Appl Radiat Isot 49(1):29–34. https://doi.org/10.1016/S0969-8043(97)00249-2

    Article  CAS  PubMed  Google Scholar 

  42. Bystrzejewska-Piotrowska G, Pianka D, Bazała MA et al (2008) Pilot study of bioaccumulation and distribution of cesium, potassium, sodium and calcium in king oyster mushroom (Pleurotus eryngii) grown under controlled conditions. Int J Phytoremediat 10(6):503–514. https://doi.org/10.1080/15226510802114987

    Article  CAS  Google Scholar 

  43. Oolbekkink GT, Kuyper TW (1989) Radioactive cesium from Chernobyl in fungi. Mycologist 3(1):3–6

    Article  Google Scholar 

  44. Yoshida S, Muramatsu Y, Steiner M (2000) Relationship between radiocesium and stable cesium in plants and mushrooms collected from forest ecosystems with different contamination levels. In: IRPA-10 proceedings of the 10th international congress of the international radiation protection association on harmonization of radiation, human life and the ecosystem. Japan Health Physics Society

  45. Yamaguchi N, Mitome M, Kotone A-H et al (2016) Internal structure of cesium-bearing radioactive microparticles released from Fukushima nuclear power plant. Sci Rep 6:20548. https://doi.org/10.1038/srep20548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Steinhauser G (2018) Anthropogenic radioactive particles in the environment. J Radioanal Nucl Chem 318(3):1629–1639. https://doi.org/10.1007/s10967-018-6268-4

    Article  CAS  Google Scholar 

  47. Igarashi Y, Kita K, Maki T et al (2019) Fungal spore involvement in the resuspension of radiocaesium in summer. Sci Rep 9(1):1954. https://doi.org/10.1038/s41598-018-37698-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Terakawa A, Ishii K, Matsuyama S et al (2013) Studies on radioactive cesium and alkali elements in Lentinula edodes (Shiitake) based on PIXE analysis. Int J PIXE 23(03n04):147–152. https://doi.org/10.1142/s0129083513410076

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.W. gratefully acknowledges financial support by the Deutsche Bundesstiftung Umwelt (DBU) in the form of a Promotionsstipendium (No. 20017/484). We gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG) for support in the form of financing of the LA-ICP-MS unit (419819104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Steinhauser.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weller, A., Zok, D. & Steinhauser, G. Uptake and elemental distribution of radiosilver 108mAg and radiocesium 137Cs in shiitake mushrooms (Lentinula edodes). J Radioanal Nucl Chem 322, 1761–1769 (2019). https://doi.org/10.1007/s10967-019-06778-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06778-1

Keywords

Navigation