Skip to main content
Log in

Solvation Structure and Dynamics of Aqueous Solutions of Au+ Ions: A Molecular Dynamics Simulation Study

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Although gold (Au) as an element is precious and noble, its elemental as well as ionic form is of huge scientific importance in view of its applications in electrochemistry, nano-electronics and other related fields. We have studied structure and dynamics of aqueous solutions of gold ions (Au+) using molecular dynamics simulations. Using a modified LJ parameter set for the Au+ ions in water in our molecular dynamics simulations, we have established the hydration structure and dynamics of Au+ ions in terms of radial distributions, orientations and residence time of the nearest neighbours. Our results on peak position, height and coordination numbers are in much better agreement with those from the recent CPMD simulations. Relative orientation of the neighbours as obtained from the angular distributions suggests octahedral or trigonal bi-pyramidal structure of the solvation shell. Orientational distributions of dipoles and other molecular orientational vectors indicate that the hydrogen atoms of the water molecules are away from the central Au+ ion. The residence time calculated from the corresponding time correlation function is found to be reasonably high, indicating less exchange of water molecules between the first and second solvation shells of the Au+ ion. In essence, the present results are in much better agreement with the CPMD results as compared to other QM/MM and classical force-field-based simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Giljohann, D.A., Seferos, D.S., Daniel, W.L., Massich, M.D., Patel, P.C., Mirkin, C.A.: Gold nanoparticles for biology and medicine. Angew. Chem. Int. Ed. 49, 3280–3294 (2010)

    CAS  Google Scholar 

  2. Reddy, P.N., Peña-Méndez, E.M., Havel, J.: Gold and nano-gold in medicine: overview, toxicology and perspectives. J. Appl. Biomed. 7, 75–91 (2009)

    Google Scholar 

  3. Ahn, K. Y., Forbes, L.: Methods and apparatus for making integrated-circuit wiring from copper, silver, gold, and other metals. US Patent 6,429,120, issued 6 Aug 2002.

  4. Di, Q., Liu, F., Yu, J., Xie, W., Xu, Q., Li, X., Huang, Y.: Plasmonic core-shell gold nanoparticle enhanced optical absorption in photovoltaic devices. Appl. Phys. Lett. 98, 113119 (2011)

    Google Scholar 

  5. Soheil, S., Diep, V.M., Zeto, R., Armani, A.M.: Stimulated anti-Stokes Raman emission generated by gold nanorod coated optical resonators. ACS Photonics 5, 3550–3556 (2018)

    Google Scholar 

  6. Olmon, R.L., Slovick, B., Johnson, T.W., Shelton, D., Oh, S.-H., Boreman, G.D., Raschke, M.B.: Optical dielectric function of gold. Phys. Rev. B 86, 235147 (2012)

    Google Scholar 

  7. Abbas, M.A., Kamat, P.V., Bang, J.H.: Thiolated gold nanoclusters for light energy conversion. ACS Energy Lett. 3, 840–854 (2018)

    CAS  Google Scholar 

  8. Yan, W., Kim, J.Y., Xing, W., Donavan, K.C., Ayvazian, T., Penner, R.M.: Lithographically patterned gold/manganese dioxide core/shell nanowires for high capacity, high rate, and high cyclability hybrid electrical energy storage. Chem. Mater. 24, 2382–2390 (2012)

    CAS  Google Scholar 

  9. Kar, P., Sardar, S., Bo, L., Sreemany, M., Lemmens, P., Ghosh, S., Pal, S.K.: Facile synthesis of reduced graphene oxide–gold nanohybrid for potential use in industrial waste-water treatment. Sci. Tech. Adv. Mater. 17, 375–386 (2016)

    CAS  Google Scholar 

  10. Qian, H., Pretzer, L.A., Velazquez, J.C., Zhao, Z., Wong, M.S.: Gold nanoparticles for cleaning contaminated water. J. Chem. Tech. Biotech. 88, 735–741 (2013)

    CAS  Google Scholar 

  11. Pantapasis, K., Grumezescu, A.M.: Gold nanoparticles: advances in water purification approaches. In: Grumezescu, A.M. (ed.) Water Purification, pp. 447–477. Academic Press, Cambridge (2017)

    Google Scholar 

  12. Ye, Q., Zhou, J., Zhao, T., Zhao, H., Chu, W., Sheng, Z., Chen, X., Marcelli, A., Luo, Y., Wu, Z.: Identification of 13- and 14-coordinated structures of first hydrated shell of [AuCl4] acid aqueous solution by combination of MD and XANES. J. Phys. Chem. B 116, 7866–7873 (2012)

    CAS  PubMed  Google Scholar 

  13. Berg, A., Peter, C., Johnston, K.: Evaluation and optimization of interface force fields for water on gold surfaces. J. Chem. Theo. Comput. 13, 5610–5623 (2017)

    CAS  Google Scholar 

  14. Nawrocki, G., Cieplak, M.: Aqueous amino acids and proteins near the surface of gold in hydrophilic and hydrophobic force fields. J. Phys. Chem. C 118, 12929–12943 (2014)

    CAS  Google Scholar 

  15. Heinz, H., Vaia, R.A., Farmer, B.L., Naik, R.R.: Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12–6 and 9–6 Lennard-Jones potentials. J. Phys. Chem. C 112, 17281–17290 (2008)

    CAS  Google Scholar 

  16. Heinz, H., Farmer, B.L., Pandey, R.B., Slocik, J.M., Patnaik, S.S., Pachter, R., Naik, R.R.: Nature of molecular interactions of peptides with gold, palladium, and Pd−Au bimetal surfaces in aqueous solution. J. Am. Chem. Soc. 131, 9704–9714 (2009)

    CAS  PubMed  Google Scholar 

  17. Pohjolainen, E., Chen, X., Malola, S., Groenhof, G., Häkkinen, H.: A unified Amber-compatible molecular mechanics force field for thiolate-protected gold nanoclusters. J. Chem. Theo. Comput. 12, 1342–1350 (2016)

    CAS  Google Scholar 

  18. Keith, J.A., Fantauzzi, D., Jacob, T.: Reactive forcefield for simulating gold surfaces and nanoparticles. Phys. Rev. B 81, 235404 (2010)

    Google Scholar 

  19. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, New York (1987)

    Google Scholar 

  20. Sagui, C., Darden, T.: Multigrid methods for classical molecular dynamics simulations of biomolecules. J. Chem. Phys. 114, 6578–6591 (2001)

    CAS  Google Scholar 

  21. Plimpton, S.: Computational limits of classical molecular dynamics simulations. Comput. Mater. Sci. 4, 361–364 (1995)

    CAS  Google Scholar 

  22. Armunanto, R., Schwenk, C.F., Tran, H.T., Rode, B.M.: Structure and dynamics of Au+ ion in aqueous solution: Ab initio QM/MM MD Simulations. J. Am. Chem. Soc. 126, 2582–2587 (2004)

    CAS  PubMed  Google Scholar 

  23. Lichtenberger, P.M., Ellmerer, A.E., Hofer, T.S., Randolf, B.R., Rode, B.M.: Gold(I) and Mercury(II)—isoelectronic ions with strongly different chemistry: Ab initio QMCF molecular dynamics simulations of their hydration structure. J. Phys. Chem. B 115, 5993–5998 (2011)

    CAS  PubMed  Google Scholar 

  24. Camellone, M.F., Marx, D.: Solvation of Au+ versus Au0 in aqueous solution: electronic structure governs solvation shell patterns. Phys. Chem. Chem. Phys. 14, 937–944 (2012)

    CAS  PubMed  Google Scholar 

  25. Berendsen, H.J., van der Spoel, D., van Drunen, R.: GROMACS: a message-passing parallel molecular dynamics implementation. Computer Phys. Comm. 91, 43–56 (1995)

    CAS  Google Scholar 

  26. Brooks, B.R., et al.: CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Case, D.A., Cheatham, T.E., III., Darden, T., Gohlke, H., Luo, R., Merz, K.M., Jr., Onufriev, A., Simmerling, C., Wang, B., Woods, R.: The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Phillips, J.C., Hardy, D.J., Maia, J.D., Stone, J.E., Ribeiro, J.V., Bernardi, R.C., Buch, R., Fiorin, G., Hénin, J., Jiang, W., McGreevy, R.: Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 153, 044130 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Stiel, L.I., Thodos, G.: Lennard-Jones force constants predicted from critical properties. J. Chem. Eng. Data 7, 234–236 (1962)

    CAS  Google Scholar 

  30. Kong, C.L.: Combining rules for intermolecular potential parameters. II. Rules for the Lennard-Jones (12–6) potential and the Morse potential. J. Chem. Phys. 59, 2464–2467 (1973)

    CAS  Google Scholar 

  31. Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271 (1987)

    CAS  Google Scholar 

  32. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theo. Comp. 4, 435–447 (2008)

    CAS  Google Scholar 

  33. van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E., Berendsen, H.J.C.: GROMACS: fast, flexible and free. J. Comp. Chem. 26, 1701–1719 (2005)

    Google Scholar 

  34. Hess, B., Spoel, D. van der., Lindahl, E.: GROMACS User Manual, Version 4.6.1. (2013). https://ftp.gromacs.org/pub/manual/manual-4.6.1.pdf

  35. Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007)

    PubMed  Google Scholar 

  36. Lemak, A.S., Balabaev, N.K.: On the Berendsen thermostat. Mol. Sim. 13, 177–187 (1994)

    CAS  Google Scholar 

  37. Rühle, V.: Berendsen and Nose-Hoover thermostats. https://www2.mpip-mainz.mpg.de/~andrienk/journal_club/thermostats.pdf

  38. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)

    CAS  Google Scholar 

  39. Baumketner, A., Shea, J.E.: The influence of different treatments of electrostatic interactions on the thermodynamics of folding of peptides. J. Phys. Chem. B 109, 21322–21328 (2005)

    CAS  PubMed  Google Scholar 

  40. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8592 (1995)

    CAS  Google Scholar 

  41. Miyamoto, S., Kollman, P.A.: SETTLE: An analytical version of the SHAKE and RATTLE algorithms for rigid water models. J. Comp. Chem. 13, 952–962 (1992)

    CAS  Google Scholar 

  42. Duboue-Dijon, E., Laage, D.: Characterization of the local structure in liquid water by various order parameters. J. Phys. Chem. B 119, 8406–8418 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhenyu, Y., Buldyrev, S.V., Kumar, P., Giovambattista, N., Debenedetti, P.G., Stanley, H.E.: Structure of the first-and second-neighbor shells of simulated water: quantitative relation to translational and orientational order. Phys. Rev. E 76, 051201 (2007)

    Google Scholar 

  44. Lynden-Bell, R.M., Debenedetti, P.G.: Computational investigation of order, structure, and dynamics in modified water models. J. Phys. Chem. B 109, 6527–6534 (2005)

    CAS  PubMed  Google Scholar 

  45. Bandyopadhyay, D., Mohan, S., Ghosh, S.K., Choudhury, N.: Correlation of structural order, anomalous density, and hydrogen bonding network of liquid water. J. Phys. Chem. B 117, 8831–8843 (2013)

    CAS  PubMed  Google Scholar 

  46. Bandyopadhyay, D., Mohan, S., Ghosh, S.K., Choudhury, N.: Molecular dynamics simulation of aqueous urea solution: is urea a structure breaker? J. Phys. Chem. B 118, 11757–11768 (2014)

    CAS  PubMed  Google Scholar 

  47. Bandyopadhyay, D., Bhanja, K., Mohan, S., Ghosh, S.K., Choudhury, N.: Effects of concentration on like-charge pairing of guanidinium ions and on the structure of water: an all-atom molecular dynamics simulation study. J. Phys. Chem. B 119, 11262–11274 (2015)

    CAS  PubMed  Google Scholar 

  48. Choudhury, N.: Dynamics of water in solvation shells and intersolute regions of c60: a molecular dynamics simulation study. J. Phys. Chem. C 111, 2565–2572 (2007)

    CAS  Google Scholar 

  49. Choudhury, N.: Dynamics of water at the nanoscale hydrophobic confinement. J. Chem. Phys. 132, 064505 (2010)

    PubMed  Google Scholar 

  50. Choudhury, N.: Effect of surface hydrophobicity on the dynamics of water at the nanoscale confinement: a molecular dynamics simulation study. Chem. Phys. 421, 68–76 (2013)

    CAS  Google Scholar 

  51. Marx, D.: RDF data obtained from CPMD simulations. (Private Communication)

  52. Chena, M., Kob, H.-Y., Remsing, R.C., Andrade, M.F.C., Santra, B., Sun, Z., Selloni, A., Car, R., Klein, M.L., Perdew, J.P., Wu, X.: Ab initio theory and modeling of water. Proc. Natl. Acad. Sci. USA 114, 10846–10851 (2017)

    Google Scholar 

  53. Chopra, M., Choudhury, N.: Molecular dynamics simulation study of distribution and dynamics of aqueous solutions of uranyl ions: the effect of varying temperature and concentration. Phys. Chem. Chem. Phys. 17, 27840–27850 (2015)

    CAS  PubMed  Google Scholar 

  54. Chopra, M., Choudhury, N.: Effect of uranyl ion concentration on structure and dynamics of aqueous uranyl solution: a molecular dynamics simulation study. J. Phys. Chem. B 118, 14373–14381 (2014)

    CAS  PubMed  Google Scholar 

  55. Koneshan, S., Rasaiah, J.C., Lynden-Bell, R.M., Lee, S.H.: Solvent structure, dynamics, and ion mobility in aqueous solutions at 25 °C. J. Phys. Chem. B 102, 4193–4204 (1998)

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. A. K. Tyagi, Chemistry Group, Bhabha Atomic Research Centre (BARC), Mumbai, India, for his support and encouragement. One of us (SS) would like to thank Dr. C. N. Patra for his support and encouragement. We acknowledge Computer Division, BARC, for providing ANUPAM supercomputing facility and support.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

NC designed the problem, SS and DB carried out the simulation work. SS and NC wrote the main manuscript text, and DB made all figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Niharendu Choudhury.

Ethics declarations

Competing Interests

The authors declare no competing financial and non-financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 386 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Bhadyopadhyay, D. & Choudhury, N. Solvation Structure and Dynamics of Aqueous Solutions of Au+ Ions: A Molecular Dynamics Simulation Study. J Solution Chem 52, 326–342 (2023). https://doi.org/10.1007/s10953-022-01234-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01234-3

Keywords

Navigation