Skip to main content
Log in

Model-Dependency of Thermodynamic Consistency: Application to Acid Gases Solubility Data in Commercial Physical Solvents

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A method of area test based on the Gibbs–Duhem equation and an equation of state (GD/EoS) was used to analyze thermodynamic consistency behavior of systems that do not cover the whole concentration range and have generally been shown to be model-dependent. In this work thermodynamic consistency test of experimental solubility data of gases (CO2, H2S and COS) in some commercial physical solvents (propylene carbonate, sulfolane and N-methylpyrrolidone) with four cubic equations of state have been studied to check the model dependency of consistency results. Equations of states used in this work include Peng–Robinson and Sterejik–Vera with three optional mixing rules and Generic Redlich–Kwong developed by Shiflett and Yokozeki.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jou, F.Y., Deshmukh, R.D., Otto, F.D., Mather, A.E.: Solubility of H2S, CO2, CH4 and C2H6 in sulfolane at elevated temperatures. Fluid Phase Equilib. 56, 313–324 (1990)

    Article  CAS  Google Scholar 

  2. Torabi Angaji, M., Ghanbarabadi, H., Karimi Zad Gohari, F.: Optimizations of sulfolane concentration in propose sulfinol-M solvent instead of MDEA solvent in the refineries of Sarakhs. J. Nat. Gas Sci. Eng. 15, 22–26 (2013)

    Article  CAS  Google Scholar 

  3. Badawi, H.M., Förner, W., El Ali, B., Al-Durais, A.-R.A.H.: Ring inversion, structural stability and vibrational assignments of sulfolane c-C4H8SO2 and 3-sulfolene c-C4H6SO2. Spectrochim. Acta A 70, 983–990 (2008)

    Article  Google Scholar 

  4. Tilstam, U.: Sulfolane: a versatile dipolar aprotic solvent. Org. Process Res. Dev. 16, 1273–1278 (2012)

    Article  CAS  Google Scholar 

  5. Hochgesand, G.: Rectisol and Purisol. Ind. Eng. Chem. 62(7), 37–43 (1970)

    Article  CAS  Google Scholar 

  6. Bucklin, R.W., Schendel, R.L.: Comparison of physical solvents used for gas processing. Energy progress, October (1984)

  7. Mak, J., Nielsen, D., Schulte, D.: An update of the FLUOR solvent process. In: Proceeding of the Laurance Reid Gas Conditioning Conference, Norman, OK, (2007)

  8. Capdeville, S., Peytavy, J.L., Fremy, G., Anglerot, D.: Process for purifying gaseous mixtures containing mercaptans and other acidicgases, French Patent 0600448 January 18, (2006) International Publication Number WO 2007/083012 A1

  9. Cadours, R., Shah, V., Weiss, C.: HySWEET process for improved mercaptane removal, presented at International Petroleum Technology Conference held in Doha, Qatar, 7–9 December (2009)

  10. Kojima, K., Moon, H.M., Ochi, K.: Thermodynamic consistency test of vapor–liquid equilibrium data methanol-water, benzene-cyclohexane and ethyl methyl ketone-water. Fluid Phase Equilib. 56, 269–284 (1990)

    Article  CAS  Google Scholar 

  11. Valderrama, J.O., Alvarez, V.H.: A versatile thermodynamic consistency test for incomplete phase equilibrium data of high-pressure gas–liquid mixtures. Fluid Phase Equilib. 226, 149–159 (2004)

    Article  CAS  Google Scholar 

  12. Valderrama, J.O., Zavaleta, J.: Thermodynamic consistency test for high pressure gas–solid solubility data of binary mixtures using genetic algorithms. J. Supercrit. Fluids 39, 20–29 (2006)

    Article  CAS  Google Scholar 

  13. Valderrama, J.O., Robles, P.A.: Thermodynamic consistency of high pressure ternary mixtures containing a compressed gas and solid solutes of different complexity. Fluid Phase Equilib. 242, 93–102 (2006)

    Article  CAS  Google Scholar 

  14. Valderrama, J.O., Faúndez, C.A.: Thermodynamic consistency test of high pressure gas–liquid equilibrium data including both phases. Thermochim. Acta 499, 85–90 (2010)

    Article  CAS  Google Scholar 

  15. Trejos, V.M., López, J.A., Cardona, C.A.: Thermodynamic consistency of experimental VLE data for asymmetric binary mixtures at high pressures. Fluid Phase Equilib. 293, 1–10 (2010)

    Article  CAS  Google Scholar 

  16. Eslamimanesh, A., Mohammadi, A.H., Salamat, Y., Shojaei, M.J., Eskandari, S., Richon, D.: Phase behavior of mixture of supercritical CO2 + ionic liquid: thermodynamic consistency test of experimental. AlChE J. 59, 3892–3913 (2013)

    Article  CAS  Google Scholar 

  17. Faúndez, C.A., Díaz-Valdés, J.F., Valderrama, J.O.: Testing solubility data of H2S and SO2 in ionic liquids for sulfur-removal processes. Fluid Phase Equilib. 375, 152–160 (2014)

    Article  Google Scholar 

  18. Valderrama, J.O., Reategui, A., Sanga, W.W.: Thermodynamic consistency test of vapor–liquid equilibrium data for mixtures containing ionic liquids. Ind. Eng. Chem. Res. 47, 8416–8422 (2008)

    Article  CAS  Google Scholar 

  19. Soltani Panah, H.: Modeling H2S and CO2 solubility in ionic liquids using the CPA equation of state through a new approach. Fluid Phase Equilib. 437, 155–165 (2017)

    Article  CAS  Google Scholar 

  20. Saali, A., Shokouhi, M., Sakhaeinia, H., Kazemi, N.: Thermodynamic consistency test of vapor–liquid equilibrium data of binary systems including carbon dioxide and ionic liquids using generic Redlich–Kwong equation of state. J. Solution Chem. 49, 383–404 (2020)

    Article  CAS  Google Scholar 

  21. Eslamimanesh, A., Mohammadi, A.H., Richon, D.: Thermodynamic consistency test for experimental data in carbon dioxide/methane + water system inside and outside gas hydrate formation region. J. Chem. Eng. Data 56, 1573–1586 (2011)

    Article  CAS  Google Scholar 

  22. Mashayekhi, M., Sakhaeinia, H., Shokouhi, M.: Thermodynamic consistency test of solubility data of carbon dioxide in some associating solvents. Int. J. Thermophys. 41(1), 11 (2020)

    Article  CAS  Google Scholar 

  23. Stryjek, R., Vera, J.H.: An improved Peng–Robinson equation of state for pure compounds and mixtures. Can. J. Chem. Eng. 64, 334–340 (1986)

    Article  CAS  Google Scholar 

  24. Stryjek, R., Vera, J.H.: PRSV: an improved Peng–Robinson equation of state with new mixing rules for nonideal mixtures. Can. J. Chem. Eng. 64, 323–333 (1986)

    Article  CAS  Google Scholar 

  25. Zhao, H., Lvov, S.N.: Phase behavior of the CO2–H2O system at temperatures of 273–623 K and pressures of 0.1–200 MPa using Peng–Robinson–Stryjik–Vera equation of state with modified Wong–Sandler mixing rule: an extension to the CO2–CH4–H2O system. Fluid Phase Equilib. 417, 96–108 (2016)

    Article  CAS  Google Scholar 

  26. Shiflett, M.B., Yokozeki, A.: Solubility of CO2 in room temperature ionic liquid [hmim][Tf2N]. J. Phys. Chem. B 111, 2070–2074 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. Shiflett, M.B., Yokozeki, A.: Seperation of CO2 and H2S using room-temperature ionic liquid [bmim][PF6]. Fluid Phase Equilib. 294, 105–113 (2010)

    Article  CAS  Google Scholar 

  28. Yokozeki, A., Shiflett, M.B., Junk, C.P., Grieco, L.M., Foo, T.: Physical and chemical absorptions of carbon dioxide in room-temperature ionic liquids. J. Phys. Chem. B 112, 16654–16663 (2008)

    Article  CAS  PubMed  Google Scholar 

  29. Valderrama, J.O., Faundez, C.A., Campusano, R.: An overview of a thermodynamic consistency test of phase equilibrium data. Application of the versatile VPT equation of state to check data of mixtures containing a gas solute and an ionic liquid solvent. J. Chem. Thermodyn. 131, 122–132 (2019)

    Article  CAS  Google Scholar 

  30. Valderrama, J.O.: The state of the cubic equations of state. Ind. Eng. Chem. Res. 42(7), 1603–1618 (2003)

    Article  CAS  Google Scholar 

  31. Jalili, A.H., Shokouhi, M., Samani, F., Hosseini-Jenab, M.: Measuring the solubility of CO2 and H2S in sulfolane and the density and viscosity of saturated liquid binary mixtures of (sulfolane + CO2) and (sulfolane + H2S). J. Chem. Thermodyn. 85, 13–25 (2015)

    Article  CAS  Google Scholar 

  32. Roberts, B.E., Mather, A.E.: Solubility of H2S and CO2 in sulfolane. Can. J. Chem. Eng. 66(3), 519–520 (1988)

    Article  CAS  Google Scholar 

  33. Murrieta-Guevara, F., Romero-Martinez, A., Trejo, A.: Solubilities of carbon dioxide and hydrogen sulfide in propylene carbonate, N-methylpyrrolidone and sulfolane. Fluid Phase Equilib. 44, 105–115 (1988)

    Article  CAS  Google Scholar 

  34. Shokouhi, M., Farahani, H., Vahidi, M., Taheri, S.A.: Experimental solubility of carbonyl sulfide in sulfolane and γ-butyrolactone. J. Chem. Eng. Data 62, 3401–3408 (2017)

    Article  CAS  Google Scholar 

  35. Zhao, Z., Xing, X., Tang, Z.: Solubility of CO2 and H2S in carbonates solvent: experiment and quantum chemistry calculation. Int. J. Greenh. Gas Control 59, 123–135 (2017)

    Article  CAS  Google Scholar 

  36. Murrleta-Guevara, F., Rodriguez, A.T.: Solubility of carbon dioxide, hydrogen sulfide, and methane in pure and mixed solvents. J. Chem. Eng. Data 29, 456–460 (1984)

    Article  Google Scholar 

  37. Hongling, L., Rongjiao, Z., Wei, X., Yanfen, L., Yongju, S., Yiling, T.: Vapor liquid equilibrium data of the carbon dioxide + ethyl butyrate and carbon dioxide + propylene carbonate systems at pressures from (1.00 to 13.00) MPa and temperatures from (313.0 to 373.0) K. J. Chem. Eng. Data 56, 1148–1157 (2011)

    Article  Google Scholar 

  38. Ai, N., Chen, J., Fei, W.: Solubility of carbon dioxide in four mixed solvents. J. Chem. Eng. Data 50, 492–496 (2005)

    Article  CAS  Google Scholar 

  39. Isaacs, E.E., Otto, F.D., Mather, A.E.: Solubility of H2S and CO2 in propylene carbonate solvent. Can. J. Chem. Eng. 55, 751–752 (1977)

    Article  CAS  Google Scholar 

  40. Williams, L.L., Mas, E.M., Rubin, J.B.: Vapor–liquid equilibrium in the carbon dioxide-propylene carbonate system at high pressures. J. Chem. Eng. Data 47, 282–285 (2002)

    Article  CAS  Google Scholar 

  41. Gui, X., Tang, Z.G., Fei, W.: CO2 capture with physical solvent dimethyl carbonate at high pressures. J. Chem. Eng. Data 55, 3736–3741 (2010)

    Article  CAS  Google Scholar 

  42. Mantor, P.D., Abib, O., Jr., Song, K.Y., Kobayarhl, R.: Solubility of carbon dioxide in propylene carbonate at elevated pressures and higher than ambient temperatures. J. Chem. Eng. Data 27, 243–245 (1982)

    Article  CAS  Google Scholar 

  43. Jou, F.-Y., Mather, A.E., Schmidt, K.A.G.: The solubility of hydrogen sulfide and carbon dioxide in propylene carbonate. J. Chem. Eng. Data 60, 3738–3744 (2015)

    Article  CAS  Google Scholar 

  44. Rajasingam, R., Lioe, L., Tuan Pham, Q., Lucien, F.P.: Solubility of carbon dioxide in dimethyel sulfoxide and N-methyl-2-pyrrolidone at elevated pressure. J. Supercrit. Fluids 31, 227–234 (2004)

    Article  CAS  Google Scholar 

  45. Bohloul, M.R., Vatani, A., Peyghambarzadeh, S.M.: Experimental and theoretical study of CO2 solubility in N-methyl-2-pyrrolidone (NMP). Fluid Phase Equilib. 365, 106–111 (2014)

    Article  CAS  Google Scholar 

  46. Shokouhia, M., Salooki, M.K., Ahari, J.S., Esfandyari, M.: Thermodynamical and artificial intelligence approaches of H2S solubility in N-methylpyrrolidone. Chem. Phys. Lett. 707, 22–30 (2018)

    Article  Google Scholar 

  47. Vahidi, M., Shokouhi, M.: Experimental solubility of carbon dioxide and hydrogen sulfide in 2,2′-thiodiglycol. J. Chem. Thermodyn. 133, 202–207 (2019)

    Article  CAS  Google Scholar 

  48. NIST Scientific and Technical Databases, Thermophysical Properties of Fluid Systems. http://webbook.nist.gov/chemistry/fluid/. Accessed Sept 2019

  49. Dortmund Data Bank Software and Separation Technology. http://www.ddbst.com/free-data.html. Accessed Sept 2019.

  50. Von Niederhausern, D.M., Wilson, G.M., Giles, N.F.: Critical point and vapor pressure measurements for 17 compounds by a low residence time flow method. J. Chem. Eng. Data 51, 1990–1995 (2006)

    Article  Google Scholar 

  51. Reid, R.C., Prausnitz, J.M., Sherwood, T.K.: The Properties of Gases and Liquids, 3rd edn. McGraw-Hill, New York (1977)

    Google Scholar 

  52. Daubert, T.E., Danner, R.P.: Physical and thermodynamic properties of pure chemicals: Data compilation, Hemisphere publishing corporation, New York (1989)

  53. Joback, K.G., Reid, R.C.: Estimation of pure components t properties from group contribution. Chem. Eng. Community. 57, 233–243 (1987)

  54. Valderrama, J.O., Faúndez, C.A., Diaz-Valdes, J.F.: Equation of state dependency of thermodynamic consistency method. Application to solubility data of gases in ionic liquids. Fluid Phase Equilib. 449, 76–82 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Shokouhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1496 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashayekhi, M., Saali, A., Shokouhi, M. et al. Model-Dependency of Thermodynamic Consistency: Application to Acid Gases Solubility Data in Commercial Physical Solvents. J Solution Chem 51, 97–125 (2022). https://doi.org/10.1007/s10953-022-01145-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01145-3

Keywords

Navigation