Skip to main content
Log in

Thermodynamic Consistency Test of Vapor–liquid Equilibrium Data of Binary Systems Including Carbon Dioxide (CO2) and Ionic Liquids Using the Generic Redlich–Kwong Equation of State

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The thermodynamic consistency test of solubility P–T–x data for binary mixtures including carbon dioxide (CO2) + a room temperature ionic liquid has been investigated. Experimental solubility data taken from the open literature for 32 binary mixtures of CO2/RTILs contains 80 isotherms. The applied consistency test is based on the fundamental Gibbs–Duhem equation with use of the generic Redlich–Kwong (GRK) equation of state (EoS) coupled with the van der Waals–Berthelot (GRK/vdWB) mixing rule. The optimum parameters were obtained by minimizing the summation of per cent relative deviations between modeled and experimental data, based on the bubble pressure algorithm. Modeling was found acceptable for all isotherms, which demonstrated the usability of the GRK equation of state. Results of the thermodynamic consistency test showed that 36 of the isothermal data sets were thermodynamically consistent, 37 were not fully consistent, 6 were thermodynamically inconsistent and only one data set was found to need another model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tagiuri, A., Sumon, K.Z., Henni, A.: Solubility of carbon dioxide in three [TF2N] ionic liquids. Fluid Phase Equilib. 380, 39–47 (2014)

    Article  CAS  Google Scholar 

  2. Sakhaeinia, H., Taghikhani, V., Jalili, A.H., Mehdizadeh, A., Safekordi, A.A.: Solubility of H2S in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions. Fluid Phase Equilib. 298, 303–309 (2010)

    Article  CAS  Google Scholar 

  3. Welton, T.: Room-temperature ionic liquids. Chem. Rev. 99, 2071–2084 (1999)

    Article  CAS  Google Scholar 

  4. Endres, F., Zein El Abedin, S.: Air and water stable ionic liquids in physical chemistry. Phys. Chem. Chem. Phys. 8, 2101–2116 (2006)

    Article  CAS  Google Scholar 

  5. Dohrn, R., Brunner, G.: High-pressure fluid phase equilibria: experimental methods and systems investigated (1988–1993). Fluid Phase Equilib. 106, 213–282 (1995)

    Article  CAS  Google Scholar 

  6. Valderrama, J.O., Faúndez, C.A.: Thermodynamic consistency test of high pressure gas–liquid equilibrium data including both phases. Thermochim. Acta 499, 85–90 (2010)

    Article  CAS  Google Scholar 

  7. Valderrama, J.O., Alvarez, V.H.: Aversatile thermodynamic consistency test for incomplete phase equilibrium data of high-pressure gas-liquid mixtures. Fluid Phase Equilib. 226, 149–159 (2004)

    Article  CAS  Google Scholar 

  8. Trejos, V.M., López, J.A., Cardona, C.A.: Thermodynamic consistency of experimental VLE data for asymmetric binary mixtures at high pressures. Fluid Phase Equilib. 293, 1–10 (2010)

    Article  CAS  Google Scholar 

  9. Eslamimanesh, A., Mohammadi, A.H., Richon, D.: Thermodynamic consistency test for experimental data of sulfur content of hydrogen sulfide. Ind. Eng. Chem. Res. 50, 3555–3563 (2011)

    Article  CAS  Google Scholar 

  10. Eslamimanesh, A., Mohammadi, A.H., Richon, D.: Thermodynamic consistency test for experimental data in carbon dioxide/methane + water system inside and outside gas hydrate formation region. Ind. Eng. Chem. Res. 56, 1573–1586 (2011)

    CAS  Google Scholar 

  11. Faúndez, C.A., Díaz-Valdés, J.F., Valderrama, J.O.: Testing solubility data of H2S and SO2 in ionic liquids for sulfur-removal processes. Fluid Phase Equilib. 375, 152–160 (2014)

    Article  CAS  Google Scholar 

  12. Valderrama, J.A., Robles, P.A.: Thermodynamic consistency of high pressure ternary mixtures containing a compressed gas and solid solutes of different complexity. Fluid Phase Equilib. 242, 93–102 (2006)

    Article  CAS  Google Scholar 

  13. Valderrama, J.A., Faúndez, C.A.: Thermodynamic consistency test of high pressure gas-liquid equilibrium data including both phases. Thermochim. Acta 499, 85–90 (2010)

    Article  CAS  Google Scholar 

  14. Valderrama, J.A., Zavaleta, J.: Thermodynamic consistency test for high pressure gas–solid solubility data of binary mixtures using genetic algorithms. J. Supercritic. Fluids. 39, 20–29 (2006)

    Article  CAS  Google Scholar 

  15. Eslamimanesh, A., Mohammadi, A.H., Salamat, Y., Shojaei, M.J., Eskandari, S., Richon, D.: Phase behavior of mixture of supercritical CO2 + ionic liquid: thermodynamic consistency test of experimental. AlChE J. 59, 3892–3913 (2013)

    Article  CAS  Google Scholar 

  16. Valderrama, J.O., Reategui, A., Sanga, W.W.: Thermodynamic consistency test of vapor–liquid equilibrium data for mixtures containing ionic liquids. Ind. Eng. Chem. Res. 47, 8416–8422 (2008)

    Article  CAS  Google Scholar 

  17. Soltani Panah, H.: Modeling H2S and CO2 solubility in ionic liquids using the CPA equation of state through a new approach. Fluid Phase Equilib. 437, 155–165 (2017)

    Article  CAS  Google Scholar 

  18. Yokozeki, A., Shiflett, M.B.: Vapor–liquid equilibria of ammonia + ionic liquid mixtures. Appl. Energy 84, 1258–1273 (2007)

    Article  CAS  Google Scholar 

  19. Shiflett, M.B., Yokozeki, A.: Separation of CO2 and H2S using room-temperature ionic liquid [bmim] [PF6]. Fluid Phase Equilib. 294, 105–113 (2010)

    Article  CAS  Google Scholar 

  20. Van Ness, H.C., Abbott, M.M.: Classical Thermodynamics of Nonelectrolyte Solutions. McGraw-Hill, New York (1982)

    Google Scholar 

  21. Smith, J.M., Van Ness, H.C., Abbott, M.M.: Introduction to Chemical Engineering Thermodynamics, 6th edn. McGraw-Hill, New York (2003)

    Google Scholar 

  22. Valderrama, J.O., Zavaleta, J.: Thermodynamic consistency test for high pressure gas-solid solubility data of binary mixtures using genetic algorithms. J. Supercrit. Fluids 39, 20–29 (2006)

    Article  CAS  Google Scholar 

  23. Valderrama, J.O., Reátegui, A., Sanga, W.W.: Thermodynamic consistency test of vapor–liquid equilibrium data for mixtures containing ionic liquids. Ind. Eng. Chem. Res. 47, 8416–8422 (2007)

    Article  CAS  Google Scholar 

  24. Faundez, C.A., Diaz-Valdes, J.F., Valderrama, J.O.: Testing solubility data of H2S and SO2 in ionic liquids for sulfur-removal processes. Fluid Phase Equilib. 375, 152–160 (2014)

    Article  CAS  Google Scholar 

  25. Zoubeik, M., Mohamedali, M., Henni, A.: Experimental solubility and thermodynamic modeling of CO2 in four new imidazolium and pyridinium-based ionic liquids. Fluid Phase Equilib. 419, 67–74 (2016)

    Article  CAS  Google Scholar 

  26. Zoubeik, M., Henni, A.: Experimental and thermodynamic study of CO2 solubility inpromising [TF2N and DCN] ionic liquids. Fluid Phase Equilib. 376, 22–30 (2014)

    Article  CAS  Google Scholar 

  27. Nonthanasin, T., Henni, A., Saiwan, C.: Densities and low pressure solubilities of carbon dioxide in five promising ionic liquids. RSC Adv. 4, 7566–7578 (2014)

    Article  CAS  Google Scholar 

  28. Tagiuri, A., Sumon, K.Z., Henni, A., Zanganeh, K., Shafeen, A.: Effect of cation on the solubility of carbon dioxide in threebis(fluorosulfonyl)imide low viscosity ([FSI]) ionic liquids. Fluid Phase Equilib. 375, 324–331 (2014)

    Article  CAS  Google Scholar 

  29. Shiflett, M.B., Yokozeki, A.: Solubilities and diffusivities of carbon dioxide in ionic liquids: [bmim] [PF6] and [bmim] [BF4]. Ind. Eng. Chem. Res. 44, 4453–4464 (2005)

    Article  CAS  Google Scholar 

  30. Shiflett, M.B., Kasprzak, D.J., Junk, C.P., Yokozeki, A.: Phase behavior of carbon dioxide + [bmim][Ac] mixtures. J. Chem. Thermodyn. 40, 25–31 (2008)

    Article  CAS  Google Scholar 

  31. Shiflett, M.B., Yokozeki, A.: Phase behavior of carbon dioxide in ionic liquids: [emim][acetate], [emim][trifluoroacetate], and [emim][acetate] + [emim][trifluoroacetate] Mixtures. J. Chem. Eng. Data 54, 108–114 (2009)

    Article  CAS  Google Scholar 

  32. Soriano, A.N., Doma, B.T., Li, M.H.: Solubility of carbon dioxide in 1-ethyl-3-methylimidazolium tetrafluoroborate. J. Chem. Eng. Data 53, 2550–2555 (2008)

    Article  CAS  Google Scholar 

  33. Yokozeki, A., Shiflett, M.B., Junk, C.P., Grieco, L.M., Foo, T.: Physical and chemical absorptions of carbon dioxide in room-temperature ionic liquids. J. Phys. Chem. B 112, 16654–16663 (2008)

    Article  CAS  Google Scholar 

  34. Valderrama, J.O., Faúndez, C.A., Diaz-Valdes, J.F.: Equation of state dependency of thermodynamic consistency method. Application to solubility data of gases in ionic liquids. Fluid Phase Equilib. 449, 76–82 (2017)

    Article  CAS  Google Scholar 

  35. Valderrama, J.O., Faundez, C.A., Campusano, R.: An overview of a thermodynamic consistency test of phase equilibrium data: Application of the versatile VPT equation of state to check data of mixtures containing a gas solute and an ionic liquid solvent. J. Chem. Thermodyn. 131, 122–132 (2019)

    Article  CAS  Google Scholar 

  36. Husson-Borg, P., Majer, V., Costa Gomez, M.F.: Solubility of oxygen and carbon dioxide in butyl methyl imidazolium tetrafluoroborate as a function of temperature and at pressures close to atmpspheric pressure. J. Chem. Eng. Data 48, 480–485 (2003)

    Article  CAS  Google Scholar 

  37. Jalili, A.H., Mehdizadeh, A., Shokouhi, M., Sakhaeinia, H., Taghikhani, V.: Solubility of CO2 in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions. J. Chem. Thermodyn. 42, 787–791 (2010)

    Article  CAS  Google Scholar 

  38. Kim, Y.S., Choi, W.Y., Jang, K.-P.Y., Lee, C.S.: Solubility measurement and prediction of carbon dioxide in ionic liquids. Fluid Phase Equilib. 228–229, 439–445 (2005)

    Article  CAS  Google Scholar 

  39. Stryjek, R., Vera, J.H.: PRSV—an improved peng-robinson equation of state with new mixing rules for strongly nonideal mixtures. Can. J. Chem. Eng. 64, 334–340 (1986)

    Article  CAS  Google Scholar 

  40. Mashayekhi, M., Sakhaeinia, H., Shokouhi, M.: Analysis of thermodynamic consistency behavior of CO2 solubility in some associating solvents. Int. J. Thermophys. 41, 11 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Sakhaeinia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saali, A., Shokouhi, M., Sakhaeinia, H. et al. Thermodynamic Consistency Test of Vapor–liquid Equilibrium Data of Binary Systems Including Carbon Dioxide (CO2) and Ionic Liquids Using the Generic Redlich–Kwong Equation of State. J Solution Chem 49, 383–404 (2020). https://doi.org/10.1007/s10953-020-00963-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-00963-7

Keywords

Navigation